

TNF-alpha promoter -308 and PTPN22 C1858T genes polymorphisms in Systemic lupus erythematosus

Thesis

Submitted in Partial Fulfilment of the Requirements for M.D. Degree in Clinical and Chemical Pathology

Ву

Asmaa Mohamed kamal Ibrahem

M.B., B.Ch., M.Sc. Clinical and Chemical Pathology

Supervised by

Prof. Dr. Fatma A. F. El Mougy

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr. Manal Mohamed Kamal

Assistant Professor of Clihical and Chemical Pathology Faculty of Medicine Cairo University

Dr. Tamer Mohamed Gheita

Assistant Professor of Rheumatology and Rehabilitation Faculty of Medicine
Cairo University

Dr. Mona Mohamed Fathy

Lecturer of Clihical and Chemical Pathology
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2012

بسم الله الرحمن الرحيم

(قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم)

صدق الله العظيم

Abstract

Objective: To assess the role of TNFα-308 G/A and PTPN22 C1858T SNP with

respect to SLE susceptibility in Egyptian patients and whether these genetic

polymorphisms are associated with the clinical and immunological features of the

disease. Also determination of TNF alpha concenteration in relation to different

genotypes and in relation to disease activity.

Methods: 40 SLE patients & 40 healthy subjects were tested for TNF alpha -308

and PTPN22 (C1858T) genotypes by PCR-RFLP and TNFα concenteration was

measured in their serum using ELISA.

Results: No significant differences in TNF α -308 and PTPN22 (C1858T)

genotypes or alleles frequencies could be identified between SLE cases and controls

(P=0.108, 0.152 respectively). The level of serum TNF α was significantly higher in SLE

patients when compared with the healthy control volunteers (P < 0.001). Furthermore,

TNFα serum level was also statistically significantly higher in SLE patients with cardiac

affection, with vasculitis and with low complement level (P=0.045, 0.016, 0.015

respectively). The serum level of TNF was statistically significantly higher in SLE group

with high disease activity when compared with those low disease activity (P = 0.001).

Also, there was a significant positive correlation between serum TNF α and SLEDAI

(r = 0.723, P < 0.001).

Conclusion: The results of this study suggest that, TNF α -308 and PTPN22

(C1858T) polymorphisms, do not exhibit a significant influence on the susceptibility,

disease course or laboratory characteristics in SLE in Egyptian patients. Nevertheless,

serum TNF α level could be a sensitive marker of SLE disease activity.

Key words: Genetics - polymorphism - TNF - PTPN22 - SLE

Acknowledgment

First and foremost, all the thanks to **Allah** the most beneficial and merciful.

I am greatly honored to express my sincere appreciation and deepest gratitude to **Prof. Dr. Fatma Elmogy**, Professor of clinical and chemical Pathology, Cairo University, under whose supervision I had the honor to proceed with this work, for her instructive supervision and help to enrich my study with her experience and knowledge throughout the steps of this work.

I would like to express my thanks and gratitude to **Dr. Manal Kamal**, Assistant Professor of clinical and chemical Pathology, Cairo University, for her kind help, support and guidance throughout the whole work, especially her valuable help regarding the statistical analysis of this study.

I am also grateful to *Dr. Tamer Gheita*, Assistant Professor of Rheumatology and Rehabilitation, Cairo University, for his kind help, and guidance.

My sincere thanks to **Dr. Mona Fathy,** Lecturer of clinical and chemical Pathology, Cairo University, for her great help, encouragement and guidance.

Finally, no words can express my feelings of gratitude to my family especially my mother for their kind support.

TABLE OF CONTENTS

	Page
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	
Systemic Lupus Erythematosus	3
Protein tyrosine phosphatase non-receptor type 22	34
Tumor necrosis factor alpha	50
SUBJECTS AND METHODS	63
RESULTS	88
DISCUSSION	111
Summary, conclusion & recommendations	123
REFERENCES	128
ARABIC SUMMARY	

LIST OF FIGURES

Figure No.		Page
1	Ribbon diagram of LYP catalytic domain	35
2	Domain sructure of PTPN22	36
3	Model for regulation of T-cell antigen receptor signaling by the Csk/Lyp complex	37
4	The PTPN22 gene is located on the short (p) arm of chromosome 1 at position 13.2.	38
5	Schematic diagram of the gene structure of 3 isoforms of LYP	39
6	SNPs identified within the PTPN22 gene	42
7	PTPN22 exon 14 showing the nucleotide sequence containing the SNP C1858T and the amino acid sequence showing the amino acid exchange arginine to tryptophan	43
8	Domain organization of the PTPN22 protein. The R620W polymorphism is located in the first SH3 binding site	44
9	Model for how the <i>PTPN22 W620</i> variant may shift thymic selection to allow for more autoreactive T cells to survive and escape into circulation	45
10	The fork-like-structure-dependent, polymerization-associated, 5′–3′nuclease activity of AmpliTaq Gold DNA Polymerase during one extension phase of PCR	47
11	Crystal structure of TNF alpha	51
12	The TNFα gene is located on the short (p) arm of chromosome 6 at position 21.3	52
13	The gene structure of <i>TNF</i> and the polymorphic sites detected within the <i>TNF</i> gene.	52
14	Agarose gel showing RFLP analysis of the $-308~\text{TNF}\alpha$ promoter gene.	81

15	Agarose gel showing RFLP analysis of the PTPN22 C1858T gene.	82
16	serial dilution of TNFα standard	84
17	TNFα standard curve	87
18	TNF genotypes distribution among cases and controls	92
19	PTPN22 genotypes distribution among cases and controls	92
20	TNF alleles distribution among cases and controls	93
21	PTPN22 alleles distribution among cases and controls	93
22	Mean age of onset of SLE among TNF genotypes	96
23	Percentage of patients with diabetes among TNF genotypes	96
24	Percentage of patients with positive DNA antibodies among TNF genotypes	97
25	Percentage of patients with high disease activity among TNF genotypes	97
26	Median TNF conc. in cases and control groups	98
27	Median TNF conc. in SLE patients with and without renal affection.	100
28	Median TNF conc. in SLE patients with and without cardiac affection	101
29	Median TNF conc. in SLE patients with normal and low complement level	101
30	Median TNF conc. in SLE patients with positive and negative DNA antibodies	102
31	Median TNF conc. in SLE patients with high and low disease activity	102
32	Correlation between TNFα conc. and SLEDAI in cases	103

LIST OF TABLES

Table No.		Page
1	Abnormal immune responses and immunoregulation in patient with SLE	5
2	Environmental factors that may be relevant in the pathogenesis of systemic lupus erythematosus	15
3	Classification criteria for the diagnosis of systemic lupus erythematosus	17
4	International Society of Nephrology/Renal Pathology Society (ISN/RPS) Classification of Lupus Nephritis	20
5	Some autoantibodies involved in the pathogenesis of SLE	26
6	Target cells and actions of TNFα	57
7	Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)	64
8	The absorbance of the TNFα standards.	86
9	Mean age of the two studied groups	88
10	Descriptive data of SLE cases	88
11	Clinical and laboratory data of SLE cases	89
12	Genotypes and alleles frequency in SLE cases and control groups	90
13	Comparison between TNF genotypes of SLE patients as regards different clinical and laboratory parameters	94
14	TNF conc. in SLE cases and control groups	98
15	Association between TNF conc. in SLE patients and different clinical & laboratory parameters	99

16	Correlation between TNF α concentration and SLEDAI in cases	103
17	$TNF\alpha$ -308 and PTPN22 C1858T haplotype frequency in SLE cases and control groups	104
18	Risk estimate of TNFα -308 genotypes	104
19	Individual data of controls	105
20	Individual data of the cases	106
21	Clinical characteristics of cases	107
22	Laborarory data of cases	109

LIST OF ABBREVIATIONS

A Adenine

aCL anticardiolipines antibodies

ACR American college of Rheumatology

ALT Alanine aminotransferase

ANA Antinuclear antibody

Anti-RNP Anti ribonucleoprotein

Anti-Sm Anti Smith

AP-4 activator protein-4

APCs Antigen presenting cells
APLA Antiphospholipid antibodies

APL Antiphospholipid

APS Antiphospholipid syndrome

ARMS Amplification refractory mutation system

ASO Allele specific oligonucleotide

AST Aspartate aminotransferase

ATP Adenosine triphosphate

B2GP1 Beta-2 glycoprotein 1

BCR B-cell antigen receptor

BILAG British Isles lupus assessment group

Bp Base pair

BUN Blood urea nitrogen

C Cytosine

C3 Complement component 3C4 Complement component 4

CBC Complete blood picture

CL Cardiolipin

CNS Central nervous system

CPK Creatine phosphokinase

CRP C-reactive protein

Csk C-terminal Src tyrosine kinase

CTH C-terminal homology

Cu Copper

CVA cerebrovascular accident

DNA Deoxyribonucleic acid

dNTPs Deoxynucleotides Triphosphate

dsDNA Double stranded DNA

EBV Epstein Barr virus

ECLAM European Community Lupus Activity Measure

EDTA Ethylenediamine tetra-acetic acid

ELISA Enzyme linked immunosorbant assay

ESR Erythrocyte sedimentation rate

F Forward

FAM 6-carboxyfluorescein

Fe Iron

G Guanine

GM-CSF Granulocyte-monocyte colony stimulating factor

Grb2 growth factor receptor-bound protein 2

HLA Human leukocytic antigen

HRP Horseradish peroxidase

HRT Hormonal replacement therapy

ICAM-1 Intercellular Adhesion Molecule 1

IF Immunofluorescence

IFN Interferon

Ig Immunoglobulin

IL Interleukin

ISN/RPS International Society of Nephrology/Renal Pathology Society

ISN/RPS International Society of Nephrology/Renal Pathology Society

Kb Kilo base

kD Kilo Dalton

LAC Lupus Anticoagulant

LDL Low-density lipoprotein

Lt Left

LYP Lymphoid tyrosine phosphatase

M.W. Molecular Weight

MgCl₂.6H₂O Magnesium Chloride Hexahydrate

MHC Major histocompatibility comlex

ml Milliliter

mM Millimole

n Number

NaCl Sodium Chloride

NaOH Sodium hydroxide

ng Nanogram

NK Natural killer

nm Nanometer

NSAIDs Nonsteroidal anti-inflammatory drugs

oxLDL Oxidized LDL

P Value Probability Value

PCR Polymerase chain reaction

PEP Proline-enriched protein tyrosine phosphatase

pg Picogram

PPi Pyrophosphate

PTPN22 Protein tyrosine phosphatase non-receptor 22

PTT Partial thromboplastin time

R Reverse

R Arginine

r Correlation coefficient

RA Rheumatoid arthritis

RBCs Red Blood Cells

RFLP Restriction fragment length polymorphism

RHD Rheumatic heart disease

RIA Radioimmunoassay

RNA Ribonucleic acid

Rt Right

S35 serine 35

SD Standard deviation

SH3 Src homology 3

SLAM Systemic lupus activity measure

SLE Systemic lupus erythematosus

SLEDAI Systemic lupus erythematosus disease activity index

SNP Single nucleotide polymorphism

sTNFRs soluble TNF receptors

T Thymine

TAMRA Tetramethylrhodamine

TBE Tris Borate EDTA

TCR T-cell receptor

TET Tetrachlorofluorescin

TGFB Transforming growth factor beta

Th Thelper

TMB Tetramethylbenzidine

TNF Tumor necrosis factor

TNFR Tumor necrosis factor receptor

TNFα Tumor necrosis factor alpha

TNFβ Tumor necrosis factor beta

Tris-HCl Tris – Hydrochloric Acid

ul Microlitre

UV Ultraviolet light

W Tryptophan

W.H.O. World health organization

Zn Zink

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease, characterized by the production of multiple autoantibodies, complement activation, and immune-complex deposition, resulting in tissue and organ damage (*Pan et al.*, 2011).

Investigators have studied several cytokines involved in SLE pathogenesis. The association between SLE and inflammation emphasize the importance of cytokine network genes (*Lin et al.*, 2009).

Tumour necrosis factor alpha (TNF α), an important proinflammatory cytokine, exerts a variety of physiological and pathogenic effects, including the activation of a cascade of inflammatory events, which lead to tissue destruction in autoimmune diseases (*Serrano et al.*, 2006).

The presumptive pathophysiological role of TNF α in SLE suggests that genetic polymorphisms affecting the TNF α production capacity may influence the susceptibility to SLE. The single-nucleotide polymorphism TNF α –308 G/A is located in the promoter region of TNF α gene. The TNF α –308A allele has been reported to be a stronger transcriptional activator in vitro than the common TNF α –308G allele (**Zou et al., 2010**).

Multiple abnormalities of T and B lymphocytes are frequently found in patients with SLE and are central to pathogenesis of the disease (*Mustelin et al.*, 2004).

The gene protein tyrosine phosphatase nonreceptor type 22 (*PTPN22*) encodes the lymphoid protein tyrosine phosphatase (Lyp) that is known to be involved in the control of T-cell activation. Under normal conditions, this enzyme (Lyp) works as a 'negative regulator' and keeps immune cells from becoming overactive (*Reddy et al.*, 2005).

The functional PTPN22 C1858T (R620W) polymorphism resides in a motif involved in C-terminal Src tyrosine kinase (Csk) binding. When a tryptophan (W) residue replaces an arginine (R) at this site, it disrupts the interaction of Lyp with Csk, thereby disturbing the regulation of the T cell receptor (TCR) signaling kinases (*Akosy et al.*, *2011*).

It seems that the R620W polymorphism, by suppressing TCR and BCR (B cell receptor) signaling, globally alters maturation, selection, and function of both T- and B-lymphocytes that predisposes to inducing autoimmunity (*Stanford et al.*, 2010).

AIM OF THE WORK

The aim of the present study was to assess the role of TNF α -308 G/A and PTPN22 C1858T SNPs with respect to SLE susceptibility in Egyptian patients and whether these genetic polymorphisms are associated with the clinical and laboratory features of the disease. Also determination of serum TNF alpha concenteration in relation to different genotypes and in relation to disease activity.