Pulmonary function changes in allergic rhinitis with or without bronchial asthma.

Thesis

Submitted for the fulfillment of M.Sc. degree in pediatrics

By

Dina Ahmed Mohamed Salah El-din

M.B. & B.ch.

Cairo University

Supervisors

Dr. Zeinab Mohamed Radwan

Professor of pediatrics Faculty of medicine Cairo University

Dr. Samia Mohamed Samy Ibrahim

Professor of pediatrics Child health department National Research centre

Dr. Hassan Mohamed El-Hoshy

Assistant Professor of E.N.T. Faculty of medicine Cairo University

Cairo University 2010

Acknowledgment

First of all, thanks to ALLAH.

I would like to express my sincere thanks and deep gratitude and respect to *Prof. Dr. Zeinab Radwan*, Professor of pediatrics, faculty of medicine, Cairo University, for her great support, valuable time, kind guidance, meticulous revision and encouragement in performing this work.

I also wish to express my extreme appreciation and gratitude to *Prof. Dr. Samia Samy*, Professor of pediatrics, child health department, National Research Centre, for her faithful supervision, constructive guidance and real interest in the progress of this work.

Many sincere thanks to *Prof. Dr. Hassan El Hoshy*, Assistant Professor of E.N.T, faculty of medicine, Cairo University, for his kind advice, help and support throughout this work.

My deepest thanks and gratitude to *Prof. Dr. Tarek Salah*, Assistant Professor of pediatrics, child health department, National Research Centre, for his continuous support, guidance and encouragement.

I am also very thankful to *Prof. Dr. Nevine El Helaly*, Assistant Professor of pediatrics, faculty of medicine, Cairo University, who generously contributed to this work, and provided me with much support.

At last but not least, I would like to express my profound gratitude and love to my husband and sons, and appreciation to my parents for their great support.

Abstract:

Inflammatory processes affecting nasal and bronchial mucosa are similar in nature. Flares of allergic rhinitis may precipitate additional asthma attacks and aggravate the underlying asthma symptoms. Allergic rhinitis is regarded as a risk factor for the development of asthma, especially in the presence of bronchial hyperresponsiveness.

Patients with underlying allergic rhinitis are three times more likely to develop asthma when compared with normal subjects. The presence of bronchial inflammation in non-asthmatic patients with seasonal allergic rhinitis is well established.

We therefore conducted a study on 60 children to examine whether those with allergic rhinitis without known underlying asthma have impaired spirometry. We compared them with those having allergic rhinitis and asthma, also with others having asthma only. The effect of treatment on spirometric parameters was shown after 3 months.

Key words:

Allergic rhinitis, Bronchial asthma, Pulmonary functions, Bronchial hyper responsiveness, Spirometric abnormalities.

Contents

List of figures	i
List of tables	iii
List of abbreviations	v
Introduction and aim of work	1
Review of literature	
Asthma	3
Allergic rhinitis	35
Asthma and allergic rhinitis	63
Pulmonary function tests	67
Patients and methods	80
Results	89
Discussion	105
Summary	114
Conclusion	118
Recommendations	119
References	120

List of figures

Figure No.	Title	Page
I-1	Pathological features of asthma	8
I-2	Management approach based on control (for children ≥ 5 years)	22
I-3	Management of acute asthma exacerbation	24
II-1	A) Allergic shiners, B) Allergic salute	39
II-2	Stepwise approach to the treatment of allergic rhinitis	45
IV-1	Volume- time curve	71
IV -2	Flow-volume loop	71
IV -3	Child performing spirometry	72
IV -4	lung volumes and capacities	73
IV -5	lung volumes and capacities	74
V-1	Med Graphic spirometer	86
VI-1	Weight distribution	91
VI-2	Height distribution	91
VI-3	Sex distribution	92
VI-4	IgE levels	92
VI-5	Pulmonary functions in group I (allergic rhinitis) before and after treatment	94
VI-6	Pulmonary functions in group II (asthma without rhinitis) before and after treatment	95
VI-7	Pulmonary functions in group III (asthma and allergic rhinitis) before and after treatment	97

VI-8	Pulmonary function tests in the three studied groups before treatment	99
VI-9	Pulmonary function tests in the three studied groups after treatment	101
VI-10	Correlation between FEF25_75 and FEV ₁ before treatment in group II	103
VI-11	Correlation between FEF25_75 and FEV ₁ after treatment in group II	103
VI-12	Correlation between FEF25_75 and FEV ₁ before treatment in group III	104
VI-13	Correlation between FEF25_75 and FEV ₁ after treatment in group III	104

List of tables

Table no.	Title	Page
I-1	Structural Changes in Asthmatic Airways	7
I-2	Airway Narrowing in Asthma	8
I-3	Asthma History from patient or parent	9
I-4	Classification of asthma severity by clinical features before treatment	18
I-5	Levels of asthma control	19
I-6	Strategies for avoiding common allergens and pollutants	20
I-7	Management approach based on control (for children ≤ 5 years)	22
I-8	Assessment of exacerbation severity	23
I-9	Estimated daily doses of inhaled corticosteroids for children	27
I-10	Medications used in long-term control of asthma in children	31
II-1	Classification of allergic rhinitis	41
VI-1	Demographic Data and serum IgE	89
VI -2	Sex distribution	90
VI -3	Pulmonary functions in allergic rhinitis group (Group I) before and after treatment	93
VI -4	Pulmonary functions in Group II (asthma without rhinitis) before and after treatment	94
VI -5	Pulmonary functions in group III (asthma and allergic rhinitis) before and after treatment	96

IV-6	Pulmonary function tests in the three studied groups before treatment	98
IV-7	Pulmonary function tests in the three studied groups after treatment	100
IV-8	Correlation between FEF ₂₅₋₇₅ and FEV ₁ in the three studied groups before and after treatment	102

List of abbreviations

AQ Aqueous

AR Allergic rhinitis

ARIA Allergic rhinitis and its impact on asthma

BHR Bronchial hyperresponsiveness

CNS Central nervous system

COPD Chronic obstructive pulmonary disease

CT Computerized tomography

CXR Chest x-ray

CysLT Cysteinyl leukotriene

ECG Electro cardio gram

ENT Ear nose and throat

FDA Food and drug administration

 \mathbf{FEF}_{25-75} Forced expiratory flow at 25-75% of vital capacity

FEV₁ Forced expiratory volume in first second

FVC Forced vital capacity

GI Gastro intestinal

GINA Global initiative for asthma

HFA Hydrofluoroalkane

HRCT High resolution computed tomography

ICs Inhaled corticosteroids

IgE Immunoglobulin E

IL Interleukin

INF Interferon

LABA Long acting beta 2 agonists

LLN Lower limit of normal

LO Lipooxygenase

MMEF Maximal mid expiratory flow

MRI Magnetic resonance imaging

MVV Maximum voluntary ventilation

NARES Non allergic rhinitis with eosinophilia

NHLBI National heart, lung and blood institute

OTC Over the counter

PAR Perennial allergic rhinitis

PEF Peak expiratory flow

PFTs Pulmonary function tests

RAST Radio allegro sorbent testing

SAR Seasonal allergic rhinitis

SPT Skin prick testing

SR Sustained release

Th2 T helper 2 lymphocytes

TNF Tumor necrosis factor

UMHS University of Medicine & Health Sciences

URTIs Upper respiratory tract infections

US Unites states

VEGF Vascular endothelial growth factor

WHO World health organization

INTRODUCTION

Inflammatory processes affecting nasal and bronchial mucosa are similar in nature (**Kessel et al, 2008**). Flares of allergic rhinitis may precipitate additional asthma attacks and aggravate the underlying asthma symptoms (**Guerra et al., 2002**). Allergic rhinitis is regarded as a risk factor for the development of asthma, especially in the presence of bronchial hyperresponsiveness (BHR) (**Van Bever et al, 2002**).

Patients with underlying allergic rhinitis are three times more likely to develop asthma when compared with normal subjects (Guerra et al, 2002). Children who develop rhinitis within the first year of life are twice more likely to develop asthma than children who develop rhinitis later in life (Settipane et al,1994). The presence of bronchial inflammation in non-asthmatic patients with seasonal allergic rhinitis is well established (Kelly et al, 2003).

The majority of patients with asthma present with seasonal or perennial allergic symptoms and up to 40% of patients with allergic rhinitis also have asthma (**Settipane et al, 1994**). The impact of concomitant allergic rhinitis and asthma on the quality of life is noteworthy. Such patients frequently complain of sleep disturbances (79% of children and adults), avoid participation in leisure activities and sports (75% of children and adults), and report poor concentration in school (73% of children) and disruptions in their social engagements (51% of children) (**Pawanker, 2004**).

Aim of work:

The aim of this work is to study any abnormality in pulmonary function tests in patients with allergic rhinitis, and to compare between pulmonary function changes before and after treatment in **a**) allergic rhinitis alone, **b**) allergic rhinitis associated with bronchial asthma and **c**) bronchial asthma alone.