Ventilator Associated Pneumonia in Geriatric Intensive Care Unit

Thesis
Submitted for Partial Fulfillment of Master Degree in
Clinical and Chemical Pathology

By

Mai Samy El-said

MB BCh

Faculty of Medicine - Ain Shams University

Supervised by

Professor / Eman Mohammed Kamel

Professor of Clinical & Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor / Rania Ali Ammar

Assistant Professor of Clinical & Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain-Shams University 2013

الألتهاب الرئوى المصاحب لجهاز التنفس الصناعى في وحدة الرعاية المركزة للمسنين

رسالة توطئة للحصول على درجة الماجيستير في الباثولوجيا الإكلينيكية والكميائية

مقدمة من الطبيبة/ مى سامى السيد العينى بكالوريوس الطب والجراحة _ كلية الطب جامعة عين شمس

تحت اشراف الاكتور / ايمان محد كامل أستاذ الباثولوجيا الإكلينيكية والكميائية كلية الطب - جامعة عين شمس

الدكتور / رانيا على عمار أستاذ مساعد الباثولوجيا الإكلينيكية والكميائية كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2013

Acknowledgements

Thanks are given to **ALLAH** the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **Professor**/ **Eman Mohammed Kamel**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University. I am greatly indebted to her for suggesting, planning the subject and supervising the whole work. I will never forget her unlimited help, continuous support, kind encouragement and wise guidance. To her, words of praise are not sufficient and I am really greatly indebted to her.

I would like to express my deep obligation to Assistant Professor/ Rania Ali Ammar, Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her useful assistance and enlightening supervision.

List of Errata

Page	Line	Written	Correct	
31	21	pneumonia	pneumoniae	
	22	Methicilin	Methicillin	
32	7	Methicilin	Methicillin	
33	2	aruginosa	aeruginosa	
	14	Staphlococcus	Staphylococcus	
	17	Pseudomoas	Pseudomonas	
89	Table (17)	Cephalosporines	Cephalosporins	
91	2	Tetracyclins	Tetracyclines	
	3	Klebsilla	Klebsiella	
	4	Carbapenam	Carbapenem	
93	11	Case was	Cases were	
94	16	Klebsilla	Klebsiella	
95	7, 15	EA	ETA	
	19	Carbapenams	Carbapenems	
	22	Tetracyclins	Tetracyclines	
96	3, 22	Carbapenams	Carbapenems	
	4, 20	Tetracyclins	Tetracyclines	
	11, 18	Pipercillin	Piperacillin	
	12	Ceftrioxone	Ceftriaxone	
	12, 17	Cefeperazone	Cefoperazone	
	13, 18	Ceftizidime	Ceftazidime	
	21	Klebsilla	Klebsiella	
97	7	Klebsilla	Klebsiella	
98	16	stoke	Stroke	
	19	Acintobacter	Acinetobacter	
	19	Klebsilla	Klebsiella	
99	5	speciemen	Specimens	
102	12	assosciated	associated	
103	11, 13	Acintobacter	Acinetobacter	
104	2	Acintobacter	Acinetobacter	

Contents

Title		Page No.
List of	Abbreviations	i
List of	Tables	iv
List of	Figures	vi
Introdu	iction	1
Aim of	the work	5
Review	of Literature	6
□ Pno	eumonia	6
	 Types of pneumonia Community acquired pneumonia (CAP) Epidemiology of Community acquired pneumonia Bacterial pathogens in Pneumonia Viral pathogens in Pneumonia Fungal Pathogens in Pneumonia Parasitic pathogens in Pneumonia pital-associated pneumonia (HAP) 	7 ia71826
	 Classification. Epidemiology and incidence. Mortality. Microbiology of Ventilator acquired pneumonia. Pathogenesis. Risk Factors. Pathology. 	30 31 33 39
☐ Diag	nosis 43	
,	 Clinical pulmonary infection score (CPIS) Microbiologic diagnosis Complications of bronchoscopic techniques for V Sensitivity and specificity of procedures for d VAP 	

Contents (Cont...)

Title	Page No.
☐ Treatment & Prevention of VAP	55
➤ Treatment of Health care assosciated	pneumonia55
➤ Selection of antibiotis	=
➤ Patterns of antibiotic resistance	59
➤ Further inpatient care	60
➤ Prevention and Control	
➤ Ventilator Bundle Approach	61
➤ Preventive measures for Ventilator ac	quired pneumonia62
Subjects and Methods	74
Results	82
Discussion	92
Conclusion and Recommendations	98
Summary	100
References	104
Arabic Summary	127

List of Abbreviations

AACN : American Association of Critical Care Nurses

ABG : Arterial Blood Gases

ARDS : Acute Respiratory Distress Syndrome

B : Bronchoscopic

BAL : Bronchoalveolar lavage

C.pneumoniae : Chlamydophila pneumoniae

CAP : Community Acquired Pneumonia

CDC : Centers for Disease Control

CFU : Colony Forming Unit

CLSI : Clinical and Laboratory Standards Institute

CNS : Central nervous system

COPD : Chronic obstructive pulmonary disease

COV : Corona virus

CPIS : Clinical Pulmonary Infection Score

CRF : Chronic renal failure

CXR : Chest X-ray

DKA : Diabetic ketoacidosisDNA : Deoxyribonucleic acid

E.coli : Escherichia coli
ECG : Electrocardiogram
Enterococcus spp : Enterococcus species

ESBL : Extended-spectrum β-lactamase

EIA : Enzyme Immunoassay

ET : Endotracheal

ETA : Endotracheal aspirate ETT : Endotracheal tube

FAMA : Fluorescent antibody staining of membrane

antigen

Fio2 : Fraction of inspired oxygen **H.influenzae** : Haemophilus Influenzae

HA : Haemagglutinin

HAP : Hospital Acquired Pneumonia

Hb : Hemoglobin

HBOV : Human Bocavirus

HCOV : Human Coronavirus

HIV : Human Immunodeficiency virus

HMPV : Human Metapneumovirus

HOB : Head of bed

HRV : Human RhinovirusHSV : Herpes Simplex virus

ICAM : Intracellular adhesion molecules

ICU : Intensive Care Unit

IFA : Immunofluorescence assay

IgG : Immunoglobulin G
IHD : Ischemic heart disease

L.bozemanae : Legionella bozemanae

L.dumoffi : Legionella dumoffi

L.longbeachae : Legionella longbeachae

L.micdadei : Legionella micdadei

LIA : Lysine iron agar

LOS : Lipopolysaccharide

LRT : Lower respiratory tract

LRTI : Lower respiratory tract infection

M.catarrhalis : Moraxella catarrhalis

M.pneumoniae : Mycoplasma pneumoniae

M2 : Matrix 2

MDR : Multiple Drug Resistance

Mini-PBAL : Mini Protected Bronchoalveolar lavage

MIO : Motility Indole Ornithine

MRSA : Methicillin Resistant Staphylococcus AureusMSSA : Methicillin Sensitive Staphylococcus Aureus

NA : Neuraminidase

NB : Non Bronchoscopically
NP : Nosocomial pneumonia
P.aeruginosa : Pseudomonas aeruginosa

PaO₂: Partial pressure of arterial oxygen
P-BAL: Protected Bronchoalveolar lavage

PCR : Polymerase Chain Reaction PMN : Polymorphonuclear cells

PNU : Pneumonia

Psa : Peptide permeases

PSB : Protected specimen brushingPTC : Plugged Telescoping CatheterPUO : Pyrexia of Unknown Origin

QEA : Quantitative endotracheal aspirate

RHD : Rheumatic heart diseaseRIA : RadioimmunoassayRNA : Ribonucleic acid

RSV : Respiratory Syncytial virus

RTA : Road traffic accident

SARS : Severe Acute Respiratory Syndrome

SDD : Selective Decontamination of Digestive tract

Staph.aureus : Staphylococcus Aureus
Strept.pneumoniae : Streptococcus Pneumoniae
TLC : Total Leucocytic Count

TSI : Triple sugar iron

Vs : Versus

VAP : Ventilator Associated Pneumonia

WBCs : White blood cells

WHO : World Health Organization

List of Tables

Table No.	Title	Page
(1)	Parasitic pathogens in ventilator acquired pneumonia	28
(2)	Specific site algorithms for clinically- defined pneumonia (PNU1)	45
(3)	Specific site algorithms for pneumonia with common bacterial or filamentous fungal pathogens and specific laboratory findings (PNU2)	46
(4)	Specific site algorithms for viral, legionella, and other bacterial pneumonias with definitive laboratory findings (PNU2)	47
(5)	Specific site algorithm for pneumonia in immunocompromised patients (PNU3)	48
(6)	Clinical pulmonary infection score(CPIS)	49
(7)	Threshold values of quantitative culture in different technique	52
(8)	Sensitivity and specificity of procedures for diagnosing ventilator acquired pneumonia	54
(9)	List of antibiotic discs and their concentration	77

List of Tables

Table No.	Title	Page
(10)	Age distribution	82
(11)	Sex distribution	83
(12)	Primary diagnosis of patients	83
(13)	Types of VAP	85
(14)	Fever in early onset and late onset VAP	85
(15)	Total leukocytic count in early onset and late onset VAP	86
(16)	Isolated organisms in VAP	87
(17)	Antibiotics senstivity pattern	89
(18)	Senstivity pattern Vs. isolated organisms	91

List of Figures

Figure No.	Title	
(1)	Flow diagram for pneumonia algorithms	44
(2)	Quantitative culture on blood agar	76
(3)	Antibiotic sensitivity on Muller Hinton	79
(4)	Antibiotic sensitivity by disc combination	80
(5)	Primary diagnosis distribution	84
(6)	Microbiological growth distribution	87
(7)	Organisms isolated in relation to type of VAP	88
(8)	Antibiotic sensitivity distribution in Early onset & Late onset VAP	90

Introduction

Hospital-acquired pneumonia is the most common lifethreatening hospital-acquired infection, and the majority of cases are associated with mechanical ventilation (*Peleg and David*, 2010).

Ventilator associated pneumonia (VAP) occurs 48 hours after intubation and mechanical ventilation. It is a common infectious disease that is found in intensive care unit (ICU), which occurs in 8-38% of patients who underwent mechanical ventilation. The incidence of pneumonia has been known to be higher in ICU patients than in general ward patients and even 3 ~ 10-fold higher in patients who underwent mechanical ventilation (*Chi et al.*, 2012).

The time of onset of pneumonia is an important risk factor for specific pathogens and outcome in patients with VAP. Early onset VAP is defined as occurring within first 4 days of hospitalization, usually caused by antibiotic-sensitive bacteria, that is, community acquired, whereas the late onset, that is, more than 5 days is associated with increased mortality in patients. The emergence of multiple drug resistant pathogens is becoming a therapeutic challenge as the treatment alternatives

are unavailable, toxic, and with poor outcome (*Jakribettu and Boloor*, 2012).

Mortality rates in patients with VAP range from 20 to 50% and may reach more than 70% when the infection is caused by multi-resistant and invasive pathogens. The incidence of VAP-attributable mortality is difficult to quantify due to the possible confounding effect of associated conditions, but VAP is thought to increase the mortality of the underlying disease by about 30%. VAP is also associated with considerable morbidity, including prolonged ICU length of stay, prolonged mechanical ventilation, and increased costs of hospitalization (*Rea-Neto et al.*, 2012).

Risk factors associated with VAP development were grouped into intrinsic factors (individual variable of age, comorbidity, disease severity, etc.) and extrinsic factors (potential hospital environment risks, prior use of antibiotics, tracheal intubations, etc.) (*Gatell et al.*, 2012).

The detection of the causative organism in VAP is imperative for guiding an appropriate therapy as there is strong evidence of the adverse effect of inadequate empirical treatment on outcome (*Badr et al.*, 2011).

Consistent six organisms (*Staphylococcus aureus* [28.0%], *Pseudomonas aeruginosa* [21.8%], *Klebsiella* species [9.8%], *Escherichia coli* [6.9%], *Acinetobacter* species [6.8%], and *Enterobacter* species [6.3%]) caused ~ 80% of episodes, with lower prevalences of *Serratia* species, *Stenotrophomonas maltophilia*, and community-acquired pathogens, such as pneumococci and *Haemophilus influenzae* (*Jones*, *2010*).

A number of strategies have been proposed for VAP prevention; however, only a few have been demonstrated to be effective, and many others still need evaluation in large randomized clinical trials before definitive recommendations can be made. Among others, modifications to the endotracheal tube (ETT) (e.g., subglottic secretion drainage systems, antimicrobial coating, alternative cuff shapes and materials), continuous maintenance of proper cuff inflating pressures, ETT secretion removal, patient positioning in the lateral horizontal position, kinetic therapy, and administration of probiotics are measures worthy of consideration in the ongoing battle to reduce the rates of VAP (*Coppadoro et al.*, 2012).

Because VAP is a potentially severe illness, this infection must be treated as soon as possible if there is a strong suspicion