

Correlation between Increased Vaginal pH and Abnormalities in the Vaginal Flora in Relation to Cervical Length and their Role in the Prediction of Preterm Birth

Thesis

Submitted for fulfillment of M.D degree in Obstetrics & Gynecology

Presented by

ImanMostafa Mohamed El Zahaby

M.B.B.Ch., M.Sc.

Assistant lecturer of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Supervised by

Dr. Osama Abdel Aziz El Shenoufy

Professor of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Dr. Ahmed Zakaria ElSheikha

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine -Cairo University

Dr. ImanEzzatWali

Assistant Professor of Microbiology Faculty of Medicine - Cairo University

Faculty of Medicine

Cairo University

2012

Acknowledgment

I wish to express my deepest gratitude and profound appreciation to *Dr. Osama El Shenoufy*, Professor of Obstetrics and Gynaecology, Faculty of Medicine, Cairo University, for his valuable advice, care, encouragement, guidance, great support and continuous help.

I wish to convey my sincere appreciation to *Dr. Ahmed Zakaria*, Assistant professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for his kind supervision, advice, support and confidence.

I gratefully acknowledge the great effort and time spent by Dr. *Iman Wali*, Assistant professor of Microbiology, Faculty of Medicine, Cairo University, for her helpful discussions, sincere assistance & close observation throughout the whole work. The time she spared for the completion of this work as well as her great interest, gave me a great support and strength.

Special thanks to the *nurses* in obstetrics outpatient clinic, Kasr el Aini hospital for their help in the production of this work. Also special thanks to the microbiology technicians *Mrs. Badr and Mr. Said* for their help in the completion of this work.

Abstract

Preterm birth continues to be a major challenge in obstetrics. One of the most important avoidable causes of prematurity is ascending genital infection. Regular screening for signs of such a disturbance using vaginal pH-measurements makes possible the detection of an "early marker" to prevent prematurity in an effective and inexpensive way. Abnormal vaginal flora (AVF), bacterial vaginosis & aerobic vaginitis (AV) are associated with preterm birth. Abnormal vaginal flora in the first trimester may be a risk factor for shortening cervix length at second and third trimester and may predict preterm delivery.

Keywords: Preterm birth, Vaginal pH, Abnormal vaginal flora, Bacterial vaginosis, Aerobic vaginitis, Cervical length.

Table of Contents

Chapter	Page
List of Abbreviations	III
List of Figures	V
List of Tables	١
Introduction & Aim of work	1
Review of Literature	
1. Preterm labor	3
2. The vaginal flora	21
3. The vaginal pH	41
4. Vaginal flora and pregnancy outcome	45
5. Cervical length	54
Materials and Methods	75
Results	81
Discussion	107
Summary	119
References	121

List of Abbreviations

AFP	Alpha fetoprotein	
AV	Aerobic vaginitis	
AVF	Abnormal vaginal flora	
BV	Bacterial vaginosis	
CL	Cervical length	
COX	Cyclo-oxygenase	
\mathbf{E}_3	Estriol	
EPTB	Early preterm birth	
FFN	Fetal fibronectin	
G.vaginalis	Gardnerella vaginalis	
hCG	Human chorionic gonadotrophin	
ICAM-1	Intra-cellular adhesion molecule 1	
IGFFBPs	Insulin-like growth factor binding	
	proteins	
M.hominis	Mycoplasma hominis	
MoM	Multiple of median	
NPV	Negative predictive value	
OR	Odds ratio	
PPROM	Preterm premature rupture of	
	membranes	
PPV	Positive predictive value	
PROM	Premature rupture of membranes	
PTB	Preterm birth	

PTD	Preterm delivery	
SPTB	Spontaneous preterm birth	
Staph.	Staphylococci	
Strept.	Streptococci	
TVU CL	Transvaginal ultrasonography	
	cervical length	
TVUSS	Transvaginal ultrasonography	
US	Ultrasound	

List of Figures

Fig.(1)	Association between infection, cytokines and preterm delivery	Page 5
Fig.(2)	Effect of inflammatory cytokines on cervix	Page 6
Fig.(3)	Cervilenz	Page 13
Fig.(4)	Bacterial vaginosis.	Page 26
Fig.(5)	Clinical picture of a patient with severe aerobic vaginitis.	Page 30
Fig.(6)	Moderate AV	Page 31
Fig.(7)	The typical AV flora (severe type)	Page 32
Fig.(8)	TVU of the cervix with normal CL (38 mm) at 23 wks.	Page 58
Fig.(9)	U-shaped funnel with 29 mm closed (functional) CL at 21 wks.	Page 65
Fig.(10)	Comparison of mean age between the preterm group ≤34 weeks' and term group >37 weeks'.	Page 82
Fig.(11)	GA at recruitment in percentage.	Page 83
Fig.(12)	Percentage of complications during follow up.	Page 84
Fig.(13)	GA at delivery in percentage in the study.	Page 84
Fig.(14)	Prevalence of each LBG among our cohort.	Page 85
Fig.(15)	The Nugent score in percentage among our cohort	Page 86

Fig.(16)	Percentage of degrees of aerobic	Page 87
	vaginitis among our cohort.	
Fig. (17)	Prevalence of M.hominis among	Page 88
	our cohort.	
Fig. (18)	The mean vaginal pH among	Page 89
	different GA of delivery.	
Fig. (19)	Predicted probability for preterm	Page 91
	labor ≤37 weeks' using the vaginal	
	pН	
	1	
Fig.(20)	Predicted probability for preterm	Page 91
Fig.(20)		1 age 71
	labor ≤34 weeks' using the vaginal	
	pН	
Fig.(21)	The relation of Nugent score result	Page 101
1 1g.(21)	to delivery week.	1 age 101
	to delivery week.	

List of Tables

Table (1)	Risk factors for preterm birth	Page 8
Table(2)	Proposed biomarkers of	Page 15
	preterm birth	
Table(3)	Nugent score	Page 26
Table(4)	Criteria for the microscopic	Page 33
	diagnosis of aerobic vaginitis	
	(AV)	
Table(5)	Predicted Probability of	Page 70
	Preterm Delivery by Cervical	
	Length.	
Table(6)	Mean age for delivery ≤37	Page 81
	weeks' vs. delivery >37 weeks'	
	in the study.	
Table(7)	Mean age for delivery ≤34	Page 81
	weeks' vs. delivery > 34 weeks'	
	in the study.	
Table(8)	The prevalence of the each	Page 85
	LBG among our cohort	
Table(9)	The results of the Nugent score	Page 86
	among our cohort listed in	
	percentage	
Table(10)	The results of the aerobic	Page 86
	vaginitis score among our	
	cohort listed in percentage.	

Table(11)	The prevalence of candidiasis	Page 87
	among our cohort.	
Table(12)	The prevalence of <i>M. hominis</i>	Page 87
	colonization among our cohort.	
Table(13)	The mean vaginal pH among	Page 88
	patients who had a preterm	
	delivery <37 weeks' vs. term	
	delivery >37 weeks'.	
Table(14)	The mean vaginal pH among	Page 89
	patients who had a preterm	
	delivery ≤34 weeks' vs. term	
	delivery >34 weeks'	
Γable(15)	Relation of the vaginal pH to	Page 90
	the delivery week, mean	
	cervical length, Nugent score,	
	AV score and the lactobacillary	
	grade.	
Γable(16)	Relation of the cervical length	Page 92
	to the delivery week, mean	
	vaginal pH, Nugent score, AV	
	score and lactobacillary grade.	
Γable(17)	Comparison between the LBG I	Page 93
	with LBG III for delivery ≤37	
	weeks' vs. delivery > 37	
	weeks'.	
Table(18)	Comparison between the LBG I	Page 93
	with LBG III for delivery ≤34	
	weeks' vs. delivery > 34	
	weeks'.	

Table(19)	Comparison between the LBG	Page 94
	la with LBG III for delivery	
	≤37 weeks' vs. delivery > 37	
	weeks'.	
Table(20)	Comparison between the LBG	Page 94
	la with LBG III for delivery	
	\leq 34 weeks' vs. delivery > 34	
	weeks'.	
T. 11 (24)		- D 01
Table(21)	Comparison between the LBG	Page 94
	a with LBG b for delivery ≤37	
	weeks' vs. delivery > 37	
	weeks'.	
Table(22)	Comparison between the LBG	Page 95
	a with LBG b for delivery	
	\leq 34 weeks' vs. delivery > 34	
	weeks'.	
Table(23)	Comparison between the LBG	Page 95
` ,	b with LBG III for delivery	S
	≤37 weeks' vs. delivery > 37	
	weeks'.	
Table(24)	Comparison between the LBG	Page 95
	b with LBG III for delivery	
	\leq 34 weeks' vs. delivery > 34	
	weeks'.	
Table(25)	Study of the effect of the	Page 96
	lactobacillary grade on the	

Table(26)	Study of the effect of the	Page 96
	lactobacillary grade on the	
	mean cervical length.	
Table(27)	The relation of the	Page 97
	lactobacillary grade on the	
	delivery week, mean cervical	
	length, mean vaginal pH,	
	Nugent score and AV score.	
Γable(28)	Comparison between normal	Page 98
	flora with the intermediate flora	
	on the delivery ≤37 weeks' vs.	
	> 37 weeks'	
Table(29)	Comparison between normal	Page 98
	flora with the intermediate flora	
	on the delivery ≤34 weeks' with	
	> 34 weeks'.	
Table(30)	Comparison between the	Page 99
	normal flora with the bacterial	
	vaginosis on the delivery ≤37	
	weeks' with > 37 weeks'	
Table(31)	Comparison between the	Page 99
	intermediate flora with the	
	bacterial vaginosis on the	
	delivery ≤ 37 weeks' with > 37	
	weeks',	
Table(32)	Comparison between the	Page 99
	intermediate flora with the	
	bacterial vaginosis on the	
	delivery ≤34 weeks' vs. > 34 weeks'	

Table(33)	Studying the effect of the	Page 100
	Nugent score on the mean	
	vaginal pH	
Table(34)	Studying the effect of the	Page 100
	Nugent score on the mean	
	cervical length	
Table(35)	The relation of the Nugent	Page 101
	score to the delivery week,	
	cervical length. vaginal pH,	
	AV score and the	
	lactobacillary score.	
Table(36)	Comparison between the mild	Page 102
	AV with the severe AV on the	
	delivery ≤37 weeks' vs. > 37	
	weeks'	
Table(37)	Comparison between the mild	Page 102
	AV with the severe AV on the	
	delivery ≤ 34 weeks' vs. > 34	
	weeks'	
Table(38)	Comparison between the	Page 103
	moderate AV with the severe	
	AV on the delivery ≤37 weeks'	
	vs. > 37 weeks',	
Table(39)	Comparison between the	Page 103
	moderate AV with the severe	
	AV on the delivery ≤34 weeks'	
	vs. > 34 weeks'	
Table(40)	Studying the relation of AV	Page 103
	score on the mean vaginal pH	
Table(41)	Studying the relation of AV	Page 104

	length.	
Table(42)	Relation of the AV score to the	Page 104
	delivery week, cervical length,	
	vaginal pH, Nugent score, and	
	lactobacillary score.	
Table(43)	Comparison between the	Page 105
	M.hominis positive with the	
	M.hominis negative on the	
	delivery \leq 37 weeks' vs. $>$ 37	
	weeks'	
Table(44)	Comparison between the M .	Page 105
	hominis positive with the	
	M.hominis negative on the	
	delivery ≤ 34 weeks' vs. > 34	
	weeks'	
Table(45)	Studying the effect of M.	Page 105
	hominis positive and negative	
	on the mean vaginal pH	
Table(46)	Studying the effect of M.	Page 106
	hominis positive and negative	
	on the mean cervical length	

Introduction

Preterm birth continues to be a major challenge in obstetrics, and there are few methods available to reliably predict true preterm labor in women who present with symptoms of labor (*Hill et al, 2008*).

An estimated 50% of spontaneous preterm births are associated with ascending genital tract infection, and those occurring before 30 weeks' gestation are even more likely to be infection-related. Because the earliest preterm births account for a disproportionate percentage of neonatal morbidity, infection associated preterm birth represents an attractive area for intervention (*Klein and Gibbs*, 2005).

Some US studies demonstrated that an elevated vaginal pH (>4.5 or \geq 5.0) by itself, or combined with an elevated Nugent Gram stain score, or with elevated neutrophils was associated with preterm delivery and LBW (*Simhan et al.*, 2003; Causi et al., 2005).

Normal vaginal microflora were associated with a 4-fold decreased risk of spontaneous preterm birth., while women who showed at least once bacterial vaginosis-like microflora, atypical gram-positive rods, or pronounced vaginal leukocytosis of unknown cause had an adjusted odds ratio of 5.2 for spontaneous preterm birth (*Verstraelen et al.*, 2007).