

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER DEPARTMENT

AN INVESTIGATION OF THE PERFORMANCE OF TRANSPOSED-FLUIDS HEAT EXCHANGERS TO BE USED IN STIRLING ENGINE DESIGN

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF THE DOCTOR OF PHILOSOPHY IN MECHANICAL POWER ENGINEERING

By

Eng. ESAM ABD EL-RAHMAN EL-KENANY

Assistant lecturer: Workers University

SUPERVISORS

Prof. Dr. A. A. El-Ehwany

Mechanical Power Dept. Faculty of Engineering Ain Shams University

Dr. GAMAL M. HENNES

Mechanical Power Dept, Faculty of Engineering, Ain Shams University.

Dr. EL DESUKI I. EID

Mechanical Dept, Faculty of Industrial Education, Suez Canal University .

Cairo 2010

SUPERVISORS SHEET

Thesis title: An investigation of the performance of transposedfluids heat exchangers to be used in Stirling engine design

Presented by: Eng. Esam Abd El-Rahman El- Kenany

Degree Name: Doctor of Philosophy in Mechanical

Power Engineering

Supervision Committee

Name, Title and Affiliation

Signature

- **1- Prof. Dr. Adel abd Elmalek El-Ehwany.** Faculty of Engineering Ain shams university.
- **2- A. Prof. Dr. Gamal mosad hennes.** Faculty of Engineering Ain shams university.
- **3- A. Prof. Dr. El Desuki I. Eid.**Faculty of Industrial Education, Suez Canal University.

APPROVAL SHEET

Thesis title: An investigation of the performance of transposedfluids heat exchangers to be used in Stirling engine design

Presented by: Eng. Esam Abd El-Rahman El- Kenany

Degree Name: Doctor of Philosophy in Mechanical

Power Engineering

Discussion Committee

Name, Title and Affiliation

Signature

1- Prof. Dr. Khamid Mahkamov.

Faculty of Engineering Durham University, U. K.

2- Prof. Dr. Mahmood Mohamed abo Elnasr.

Faculty of Engineering Ain shams university.

3- Prof. Dr. Adel abd Elmalek El-Ehwany.

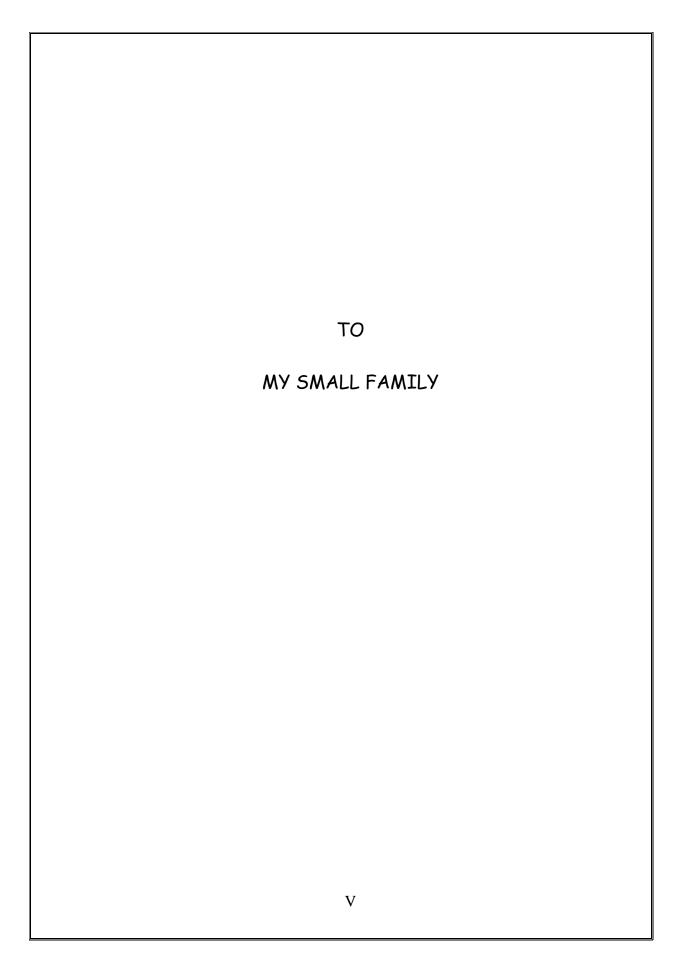
Faculty of Engineering Ain shams university.

4- A. Prof.Dr. Gamal mosad hennes.

Faculty of Engineering Ain shams university.

STATEMENT

This dissertation is submitted to Ain Shame University in fulfillment of the requirements for doctor of philosophy degree in Mechanical Engineering.


This work included in the thesis was made by the author during the period from January 2004 to November 2010 at Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for degree or qualification at any other university or institute.

Date:

Signature:

Name: Esam Abd El-Rahman El- Kenany

ACKNOWLEDGEMENT

All gratitude goes in the first place to **ALLAH** almighty who has ever guided and helped me.

I would like to express my sincere appreciation and gratitude to **Prof. Dr. Adel abd El Malek El-Ehwany**, Professor, Mechanical Power Department, Faculty of Engineering, Ain Shams University, for his supervision, encouragement, guidance and the faithful help he offered during this study.

I wish to record my sincere gratitude and thanks giving to Associate Prof. Dr. Gamal M. Hennes, Mechanical Engineering Dept., Faculty of Engineering, Ain shams University, for his many valuable directions during this research. Dr. Gamal M. Hennes provided me with a valuable material that deeply helped me in this research, and also made himself available for consultation and discussion at all time.

I wish to record my deep gratitude and greatest thanks giving to Associate Prof. Dr. EL-Desuki. I. Eid, Faculty of Industrial Education, Suez Canal University, for his many valuable directions during this research. Dr. EL-Desuki. I. Eid provided me with many and very important material that deeply helped me in this research, and also made himself available for consultation and discussion at all time.

Also, my appreciations to the technician of the Laboratory of the Steam Technology, Mr. Amin Abd El-latif.

I am also grateful to any one gave me an advice or a suggestion which helped me during this study.

Eng. Esam El-Kenany 2009

ABSTRACT

According to the objective of this research, an investigation of the performance of transposed-fluids heat exchangers to be used in Stirling engine design, eight simple heat exchangers were designed, manufactured, and tested experimentally to be used as a heater and a cooler in the alpha type Stirling engine.

Each specimen was a shell-and-tube, air-to-water, and elbow bend heat exchanger. As a first step a number of five heat exchangers were designed, manufactured, and tested. Each specimen of this group has a different tube bank arrangement and geometrical configuration. The specimen which has minimum dead volume, low pressure drop and high rate of heat transfer was selected as the best one to be improved in the second step. From the discussion of the first step experimental results, it was found that a specimen of (quadrant cross-section) and circular tube arrangement can be selected as the best one.

Three specimens were manufactured similar to the best one. These specimens have the same geometrical configuration and tube bank arrangement, but have different tube spacing. So they have different number of tubes consequently different dead volumes. From the discussion of the second step experimental results, it was found that the specimen of the least number of tubes has the minimum pressure drop, but does not have the minimum dead volume, while it has a reasonably high rate of heat transfer.

Each one of the eight tested specimens was employed individually as a heater and a cooler in a computer program (Excel program) to study the engine performance analytically. Based on the Schmidt analysis the engine work space was divided into three isothermal regions. This program considers the friction losses and consequently the pressure drop due to the working fluid flow through each part of the engine.

The dimensions of the engine parts were optimized analytically according to two schemes to get a maximum output power. In the first scheme, different strokes of the expansion and compression were assumed. In the second scheme, they were assumed to be equal. For all calculations the optimum performance was calculated at a charging pressure, which insures 40 bar maximum pressure inside the machine. The cooling water mass flow rate and its inlet temperature to the cooler were assumed constant. Also the hot gasses mass flow rate and its inlet temperature to the heater were assumed constant. The inner diameter of the expansion and compression spaces was assumed to be equal. The optimum dimensions of the engine were found. The optimum engine power was found for a specimen which has square cross-section, in-line tube bank arrangement.

CONTENTS

	NOMENCLATURE	XIII
	LIST OF FIGEURES	XVI
	LIST OF TABLES	XXIII
	Chapter 1 : Introduction	1
1-1	Definition	1
1-2	First Stirling engine	2
1-3	Advantages of Stirling engine	2
1-4	Disadvantages of Stirling engine	3
1-4	Stirling engine development	
	Chapter 2 : Stirling engine	7
2-1	Introduction	
2-2	Thermodynamics of Stirling cycle engine	
2-3	Stirling and Carnot cycles	
2-4	Stirling cycle as a refrigerating machine	
2-5	Actual Stirling cycle engine	
2-6	Schmidt's theory	
2-7	Heat exchangers in Stirling engine	
2-8	Engine configurations 23	
2-8-1	Mode of operation 2	
2-8-2	Cylinder arrangement 25	
2-8-3	Drive mechanism 28	
2-9	Working fluids for Stirling engine 30	
2-10	Power and speed control of Stirling engines	31

	Chapter 3: Literature review	
3-1	Introduction	
2-2	Stirling engine review	
2-3	Heater and cooler review	
2-4	Regenerator review	55
	Chapter 4: Experimental work	57
4-1	Introduction	57
4-2	Test Rig Description	60
4-21	Main electric power supply	62
4-2-2	Blower	
4-2-3	Duct	
4-2-4	Regulating valve	63
4-2-5	Orifice meter	
4-2-6	Heating box	
4-2-7	Mixing section	67
4-2-8	Test section	68
4-3	Test specimens	
4-4	Specimen No. II.	
4-5	Test specimen production procedure	
4-6	Measuring technique	
4-6-1	Air flow rate measurement	
4-6-2	Water flow rate measurement	
4-6-3	Temperature measurement	92
4-7	Experimental procedure	

	Chapter 5: Experimental results and discussion		
5-1	Introduction	97	
5-2	Data calculations	98	
5-3	Results		
5-3-1	Results of Specimen No. II	102	
5-3-2	Comparison of the first step	106	
5-3-3	Comparison of the second step	112	
5-4	Correlations of the experimental results	117	
5-5	Comparison with previous work	120	
	Chapter 6: Engine analysis	127	
6-1	Introduction	127	
6-2	Design parameters		
6-3	Governing equations of the cycle		
6-4	Cooler		
6-5	Heater		
6-6	Regenerator		
6-7	Power and efficiency		
6-8	Engine analysis		
6-9	Engine power analysis scheme		
6-9-1	First scheme		
6-9-2	First scheme results		
7-3-3	Second scheme	159	
7-3-4	Second scheme results	160	
7-4	Comparison between the two schemes	163	
7-5	Comparison between the eight designs	165	

	Chapter 7: Conclusion	
7-1	introduction	171
7-2	conclusions	172
7-3	Recommendation for future work	
	Appendix (A): Data Readings for test Specimen	
	No. II	175
	Appendix (B): The calibration results of the	
	thermocouples	179
	Appendix (C): Flow chart of the Computer	
	Program	184
	Appendix (D): Uncertainty analysis	185
	References:	189

NOMENCLATURE

Symbol	l Description	
A	Area	m^2
С	heat capacity rate	
C^*	heat capacity ratio	
C_p	specific heat at constant pressure	J/kg . K
D	cylinder diameter	m
d	tube diameter	m
f	friction factor	
G	mass flux of the air based on the minimum flow area	$kg/m^2.s$
h	heat transfer coefficient	$W/m^2.K$
k	thermal conductivity	W/m .K
L	effective length of tube	m
L_X	heat exchanger width	m
L_Y	heat exchanger height	
L_Z	heat exchanger length	m
m	mass flow rate	kg/s
n	number of water passes	
N	engine speed	rpm
N_{tube}	number of tube rows	
N_{total}	total number of tubes	
Nu	Nusselt number	
NTU	number of transfer units	
P	pressure	Pa
ΔP	pressure drop	Pa

PS	length of the piston stroke	m
Q	heat transfer rate	W
R	Crank radii	m
r_v	compression ratio	
r_p	pressure ratio	
$-\atop R_f$	gas constant	J/kg.K
Re	Reynolds number	
S	entropy	J/kg.K
S	tube spacing (pitch)	m
St	Stanton number	
S_{v}	surface area of heat transfer to volume ratio	m^2/m^3
T	temperature	°K
t	time	S
T_i	time interval	S
U	overall heat transfer coefficient	$W/m^2.K$
V	volume	m^3
V_d	dead volume	m^3
V_{total}	total volume of the specimen	m^3

Greek symbol

μ	dynamic viscosity	
ρ	density	kg/m^3
Ψ	Porosity	
3	heat exchanger effectiveness	
Θ	impact angle of the stream lines	degree
θ	crank angle	degree
γ	phase angle	degree
η	engine efficiency	

Subscripts

a	air side	min	minimum value
ave	average value	n	transverse
C	compression	0	outer
cl	clearance	p	longitudinal
ch	charging	R	regenerator
E	expansion	Sch	Schmidt
f	working fluid	S	tube surface
Н	heater	T	total
i	inner	w	water side
K	cooler	1	inlet
max	maximum value	2	exit