Molecular Biochemical Study of Certain DNA Repair Mechanisms and their Relation to Cancer

Thesis Submitted for the Degree of PhD in pharmaceutical Sciences (Biochemistry)

Hany Hamdy Abd El Aziz Arab

M.Sc Biochemistry, Cairo University Assistant Lecturer of Biochemistry, Faculty of Pharmacy, Cairo University.

Under the Supervision of

Prof.Dr. Adel A. Kheir El-Din

Professor of Biochemistry Faculty of Pharmacy Cairo University

Dr. Maha M. El-Sawalhi

Assistant Professor of Biochemistry Faculty of Pharmacy Cairo University

Prof.Dr. Amira A. Shaheen

Professor of Biochemistry Faculty of Pharmacy Cairo University

Prof.Dr. Altaf A. Wani

Professor of Biochemistry
Radiology Deptartment
James Cancer Hospital Research Institute
The Ohio State University, USA

Faculty of Pharmacy Cairo University 2010 بسم الله الرحمين الرحيم

صدي الله العظيم (البقرة ٣٢)

Dedicated to my father Hamdy Abd El-Aziz Arab My first teacher and guidance

Acknowledgements

First of all, I would like to thank ALLAH for his numerous blessings and endless grace in my life. Without help from my Lord, this work would not have been possible.

I am sincerely grateful to Prof. Dr. Adel Ali Kheir El-din, Professor of Biochemistry, Faculty of Pharmacy, Cairo University for his keen supervision, deep experience, generous assistance and kind relation. I would also like to express to him my gratitude for being patient with me during all the stages of this work and for his critical reviews for the dissertation.

I wish to express my sincere gratitude and profound thanks to Prof. Dr. Amira Shaheen, Professor of Biochemistry, Faculty of Pharmacy, Cairo University for her kindness, indispensable remarks, generous assistance and continuous encouragement. In fact, Dr. Amira taught me how to do good science and how to be problem-solver.

I want to express my gratitude to. Dr. Maha El-Sawalhi, Assistant Professor of Biochemistry, Faculty of Pharmacy, Cairo University for her kindness, patience, creative suggestions, valuable discussions, generous assistance, sincere help and time that she sacrificed for me.

I wish to thank my advisor, Prof. Dr. Altaf Wani, Professor of Biochemistry, The Ohio State University for the opportunity to partake in the molecular carcinogenesis research that has been an excellent intellectual journey in the United States of America.

No words can express my gratitude to Dr. Qianzheng Zhu, assistant professor of Biochemistry, The Ohio State University, for all the support he provided. Virtually, Dr. Zhu taught me everything I know in the field of "Molecular Biology", and shaped me into the scientist I am today.

I wish to thank all "Molecular Carcinogenesis" lab members at The Ohio State University, especially Dr. Mohamed El-Mahdy, El-Shaimaa Arafa and Bassant Barakat for their friendship, encouragement and continued support.

My gratitude should be extended to include all my professors and colleagues in the Department of Biochemistry, Faculty of Pharmacy, Cairo University for their continuous cooperation and moral support.

I owe very special thanks to my family members for their daily encouragement and endless patience. Finally, I would like to express my gratitude to my mother who, although separated by distance, has been with me through every step of the way.

Hany Hamdy A. Arab

Contents

Subject	Page
List of Tables	iii
List of Figures	v
List of Abbreviations	x
Literature Review	
 Nucleotide excision repair (NER) Molecular mechanism of global genomic-nucleotide excision 	1
repair (GG-NER) • Transcription-Coupled Nucleotide Excision Repair (TC-NER) - Transcription factor IIH (TFIIH)	14 38 42
 Biological roles of Xeroderma Pigmentosum protein G (XPG). Translesion DNA synthesis 	48 57
Nucleotide excision repair and skin cancerTherapy Prospects of NER associated diseases	60 63
Aim of the Work	
Material and Methods	
• Material	70
Experimental Design	75
• Methods	84
I. UV irradiation	84
II. Indirect immunoflorescence	85
VII. Protein quantitation	88
VIII. Gel electrophoresis and immuno-blot analysis of proteins (Western	
blot)	91
III. Immunoprecipitation (IP)	96
IV. Chromatin immunoprecipitation(ChIP)	98
V. Fluorimetric DNA quantitation	101
a. Picogreen assay	101
b. Hoechst dye assay	104

VI. Immuno-slot blot analysis	107
IX. Host cell reactivation assay	109
a. Transforming competent E.coli cells	110
b. Plasmid purification	112
c. Transfection of HCT116-cdk7 ^{as/as} cells with pCMV-Tag 2 Vector	115
d. Luciferase Assay	117
X. Reverse transcriptase- polymerase chain reaction (RT-PCR)	119
a. RNA purification	120
b. Reverse transcriptase reaction	123
c. Polymerase chain reaction	125
XI. Statistical Analysis	127
Results	128
Discussion	194
Summary and conclusions	213
References	217
Appendix	
Arabic summary	

List of Tables

Table		Page
1.	Chemicals used in the study	72
2.	Kits used in the study	73
3.	Composition of nutrient media and buffers used in the study	74
4.	Reagent preparation for protein quantitation	89
5.	Effective range of SDS-polyacrylamide gels for protein separation	95
6.	Preparation of 5% stacking gel for SDS-PAGE	95
7.	Preparation of resolving gel for SDS-PAGE	95
8.	DNA quantitation using Picogreen assay	102
9.	DNA quantitation using Hoechst assay	105
10.	Quantitation of TFIIH and XPG recruitment to DNA damage sites at 0.1 hour post local UV irradiation	143
11.	Quantitation of TFIIH and XPG recruitment to DNA damage sites at 0.5 hour post local UV irradiation	150
12.	Quantitation of TFIIH and XPG recruitment to DNA damage sites at 24 hours post local UV irradiation	157
13.	Quantitation of the genomic removal of CPD upon Cdk7 inhibition	173
14.	Quantitation of the genomic removal of 6-4PP upon Cdk7 inhibition	176
15.	Quantitation of XPC, TFIIH, XPA and XPG recruitment to the damage sites upon Cdk7 inhibition	182
16.	Effect of CAK inhibition on transcription recovery and transcription-coupled repair following UV-induced DNA damage	188

'.	l'able		Page
	17.	Quantitation of RT-PCR specific bands of p53, p21 and DDB2 genes	192
1	18-42.	Appendix	

List of Figures

Figure		Page
1.	Nucleotide excision repair	2
2.	Nucleotide excision repair and unscheduled DNA synthesis assay	4
3.	Skin and eye involvement in Xeroderma Pigmentosum	6
4.	Patient with XP-G/CS complex	8
5.	Clinical appearance of XP, XP/TTD, and TTD patients and polarizing microscopic examination of their hair	10
6.	Ultraviolet photoproducts of thymine dimer in DNA	12
7.	Fluorescence photobleaching techniques used in NER studies	15
8.	Model of the NER mechanism	17
9.	Colocalization of NER proteins with the sites of UV damage.	19
10.	NER protein interactions	22
11.	Model for the coordination of dual incision and repair synthesis steps in NER	28
12.	Model for NER in the context of chromatin	30
13.	The process of ubiquitylation	34
14.	DDB1 complex	36
15.	Potential outcomes following RNAPII arrest	39
16.	Suggested scenario for initiation of repair through TCR	41
17.	Structure of TFIIH protein and summary of its functions	43
18.	Effect of transcription factor II H mutations on transcription	46

Figure		Page
19.	Mutations affecting TFIIH subunits might affect interactions with specific transcription factors	47
20.	Functional domains of the XPG protein	49
21.	Known alleles of XP-G patients	53
22.	Mutations affecting TFIIH subunits might affect interactions with specific transcription factors	59
23.	Protection of XP children from UV-exposure	64
24.	Schematic presentation of direct versus indirect immunoflorescence technique	85
25.	Local UV irradiation combined with indirect immunoflorescence staining of cells	86
26.	Standard curve of bovine serum albumin	90
27.	Outline of Western blotting of proteins	92
28.	Outline of immunoprecipitation technique	96
29.	Outline of chromatin immunoprecipitation (ChIP) technique	99
30.	Standard curve of double stranded calf thymus DNA using Picogreen reagent	103
31.	Standard curve of double stranded calf thymus DNA using Hoechst dye	106
32.	Outline of plasmid DNA purification procedure	114
33.	General lipid design and proposed mechanism for DNA entry into cells	115
34.	Luminescent reaction catalyzed by firefly luciferase	117
35.	Outline of the RNA purification procedure	122

Figure		Page
62.	The chemical structure of 1-NMPP1	170
63.	Effect of 1-NMPP1 treatment on Cdk7 kinase activity in HCT116-Cdk7 ^{+/+} and HCT116-Cdk7 ^{as/as} cells	171
64.	Effect of CAK inhibition on the removal of CPD from the genome	172
65.	Quantitation of the genomic removal of CPD upon CAK inhibition	174
66.	Effect of CAK inhibition on the removal of 6-4PP from the genome	175
67.	Quantitation of the genomic removal of 6-4PP upon CAK inhibition	177
68.	Effect of CAK inhibition on the recruitment of XPC and XPA to DNA damage sites	179
69.	Effect of CAK inhibition on the recruitment of TFIIH XPB and XPG to DNA damage sites	180
70.	Effect of CAK inhibition on the recruitment of TFIIH p62 and MAT1 to DNA damage sites	181
71.	Quantitation of the recruitment of XPC, TFIIH, XPA and XPG to the damage sites upon Cdk7 inhibition	183
72.	Effect of Cdk7 kinase inhibition on the phosphorylation of RNAP II (P-Ser5)	186
73.	Effect of CAK inhibition on transcription recovery and transcription- coupled repair following UV-induced DNA damage	189
74.	Effect of Cdk7 inhibition on transcription of p53, p21, DDB2 and GAPDH genes	191
75.	Quantitation of RT-PCR specific bands of p53, p21 and DDB2 genes	193

List of Abbreviations

1-NMPP1 4-Amino-1-tert-butyl-3-(1'-naphthylmethyl)pyrazolo[3,4-d]

pyrimidine

6-4PP 6-4 pyrimidine-pyrimidone photoproducts

ACF ATP-utilizing chromatin assembly and remodeling factor

BCC Basal cell carcinomas

CAF-1 Chromatin assembly factor 1

CAK Cyclin-dependent kinase activating kinase

Cdk7 Cyclin-dependent kinase 7

Cdk9 Cyclin-dependent kinase 9

cDNA Complementary DNA

ChIP Chromatin immunoprecipitation

COP9 Constitutive photomorphogenesis protein 9

CPD Cyclobutane pyrimidine dimer

CS Cockayne syndrome

CSA Cockayne syndrome protein A

CSB Cockayne syndrome protein B

CSN Constitutive photomorphogenesis protein 9 signalosome

CTD Carboxyl terminal domain

Cul4A Cullin 4A

DAGI Donkey anti-goat immunoglobulin

DAPI 4', 6'-diamidino-2-phenylindole

DDB Damaged DNA binding protein