# CARDIOVASCULAR MAGNETIC RESONANCE FOR THE ASSESSMENT OF RIGHT VENTRICULAR FUNCTION IN PULMONARY ARTERY HYPERTENSION

## <u>Thesis</u>

Submitted for Partial Fulfillment of Master Degree in *Radiodiagnosis* 

Submitted By

## Ashwaq Mohammed Qasem

M.B.B.Ch. Cairo University

# Supervised by

#### Dr. Seif ELdin Abaza Abdulmoneem

Professor of Radiology

Cairo University

#### Dr. Mohamed Darwish Homos

Lecturer of Radiology Cairo University

Faculty of Medicine Cairo University (2015)

## Acknowledgement

First and foremost, I thank Allah, the most gracious and merciful.

I would like to express my deepest gratitude to everyone who helped, encouraged and believed in the value of this work.

I have the honor to have **Prof. Dr. Seif Eldin Abaza**, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University, as a supervisor of this work. I would like to express my deepest gratitude and respect towards him for his masterful teaching, continuous support, critical insight, enthusiastic encouragement and invaluable advice.

I would also like to express my respect and full credit and thanks to Dr. Mohamed Darwish Homos, Lecturer of Radiology, Faculty of Medicine, Cairo University, for his valuable help and close guidance throughout this work, and to whom I pay my full regards for the great effort and full assistance that he has generously offered me.

I would like to express my deepest gratitude and respect towards the Dr. Ahmed Essam Kharabish, Assistant Lecturer of Radiology Faculty of Medicine, Cairo University. I am greatly indebted to him for his valuable help and kindness, helping me to select the MRI cases, supervising on the practical part regarding cardiac MRI examination steps and post processing.

I would also like to take the opportunity to gracefully thank all the **staff members** of my Radiology Department in Cairo University for the tiresome working hours they spent out of their own time to generously supply us with their deep knowledge and skillful arts of medicine; and to whom we all fully owe our success.

Lastly, but not least; I would like to thank my dear family for their support and continuous encouragement and to whom I owe my success, and for whom I would not have been here today without.

#### **ABSTRACT**

The most common cause of death among patients with pulmonary hypertension is right ventricular failure. Because cardiac magnetic resonance imaging has emerged as the reference standard for functional and morphologic evaluation of the right ventricle, it may become the most appropriate tool for noninvasive assessment of patients with this disease. Serial examinations may help monitor response to treatment and determine the prognosis. Deterioration of right ventricular function (indicated by increasing right ventricular volumes and decreasing stroke and left ventricular volumes) at follow-up cardiac magnetic resonance imaging is indicative of failed treatment and an unfavorable prognosis.

*Key words:* Cardiac Magnetic Resonance; Pulmonary Hypertension; Right ventricular function.

## **CONTENTS**

|                                                             | Page              |
|-------------------------------------------------------------|-------------------|
| LIST OF TABLES                                              | ]                 |
| LIST OF FIGURES                                             | I                 |
| ABBREVIATIONS                                               | VI                |
| INTRODUCTION                                                | 1                 |
| REVIEW OF LITERATURE                                        | 5                 |
| Cardiac Anatomy                                             | 6                 |
| Anatomy of the Pulmonary Circulation                        | 15                |
| Right Heart Function                                        | 20                |
| Cardiovascular Magnetic Resonance Imaging Planes and Segmen | ntation <b>27</b> |
| Cardiac MRI Manifestation of Pulmonary Hypertension         | 40                |
| PATIENTS AND METHODS                                        | 53                |
| RESULTS                                                     | 67                |
| CASE PRESENTATION                                           | 78                |
| DISCUSSION                                                  | 115               |
| SUMMARY                                                     | 125               |
| DEEDENCEC                                                   | 120               |

## **LIST OF TABLES**

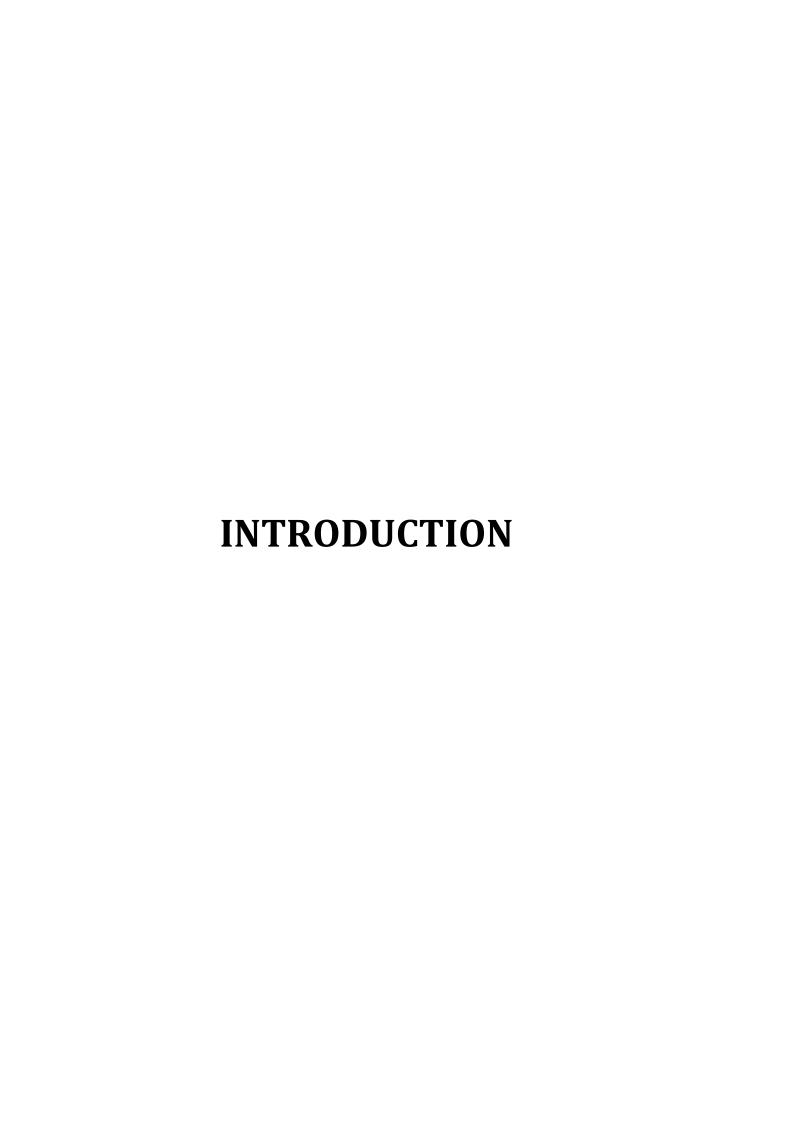
| Page                                                                           |
|--------------------------------------------------------------------------------|
| Table 1. Demographic Criteria Error! Bookmark not defined.                     |
| Table 2. Right ventricular volumes measured by MRIError! Bookmark not          |
| defined.                                                                       |
| Table 3. Left ventricular volumes measured by MRIError! Bookmark not           |
| defined.                                                                       |
| Table 4. MRI parameters of right ventricle and left ventricle in comparison to |
| published referencesError! Bookmark not defined.                               |
| Table 5. Stroke volume of aorta and pulmonary arteries Error! Bookmark         |
| not defined.                                                                   |
| Table 6. Pulmonary artery flow data70                                          |
| Table 7 Pulmonary artery flow data compared to published normal values         |
| Error! Bookmark not defined.                                                   |
| Table 8. Interventricular septum position Error! Bookmark not defined.         |
| Table 9. Correlations between systolic or mean pulmonary artery pressure       |
| and MRI parameters72                                                           |
| Tables 10-29. Ventricular function and mass and the flow quantification        |
| within the pulmonary arteries and aorta (representative                        |
| cases)80-108                                                                   |
|                                                                                |

## **LIST OF FIGURES**

| Page                                                                       |
|----------------------------------------------------------------------------|
| Figure 1. Position of the heart in the thorax7                             |
| Figure 2. Right atrium in transverse axis images using SSFP technique8     |
| Figure3. Left atrium in horizontal long-axis images using SSFP technique9  |
| Figure 4. Components of the right ventricle in horizontal long-axis images |
| using SSFP technique10                                                     |
| Figure5. Moderator band horizontal long-axis view, using the balanced-SSFP |
| technique10                                                                |
| Figure 6. Components of the left ventricle using the SSFP technique12      |
| Figure 7. Left ventricular papillary muscle using the SSFP technique12     |
| Figure8. Essential characteristics of the morphologically right and left   |
| ventricle. Horizontal long-axis view using the SSFP technique 13           |
| Figure9. Tricuspid and mitral valve using SSFP technique                   |
| Figure 10. Great vessels anatomy in T1 weighted image in coronal plane 16  |
| Figure11. Bronchi and pulmonary vessels in T1weighted image in coronal     |
| plane17                                                                    |
| Figure 12. Types of bronchial arterial supply18                            |
| Figure13. Right ventricular configuration in the normal heart and in       |
| pulmonary hypertension22                                                   |
| Figure 14. Axial, Sagittal and coronal images for the heart                |
| Figure 15. Planning 2-chamber scout view31                                 |
| Figure16. Planning 4-chamber scout view32                                  |
|                                                                            |
| Figure 17. Planning short-axis scout view                                  |

| Figure 18. Short-axis stacks analysis of ventricular volumes on the horizontal  |
|---------------------------------------------------------------------------------|
| long-axis32                                                                     |
| Figure 19. Imaging planes that can be aligned form the basal short axis slice33 |
| Figure 20. Planning 4-chamber cine view33                                       |
| Figur21. Planning 3-chamber cine view34                                         |
| Figure 22. Planning 2-chamber cine view34                                       |
| Figure 23. Alignment of the tricuspid valve plane35                             |
| Figure 24. Alignment of the pulmonary valve plane36                             |
| Figure 25. A lignment of the rigth ventricle inflow/outflow view                |
| Figure 26. The right and left pulmonary arteries38                              |
| Figure 27. The aortic outflow tract view38                                      |
| Figure 28. Planning the aortic valve view                                       |
| Figure 29. Planimetry of right ventricle41                                      |
| Figure 30. Delayed contrast enhancement in patient with pulmonary               |
| hypertension42                                                                  |
| Figure 31. Illustration of the definition of septal curvature                   |
| Figure 32. A short-axis cine image at mid-ventricular level in early            |
| diastole44                                                                      |
| Figure 33. Pair of phase contrast images perpendicular to the main              |
| pulmonaryartery47                                                               |
| Figure 34. The pulmonary artery flow pattern throughout the cardiac cycle 51    |
| Figure 35. Definition of acceleration time in the flow curve of a pulmonary     |
| flow51                                                                          |
| Figure 36. Electrode positioning56                                              |
| Figure 37. The cardiac MR coil56                                                |
| Figure 38. Imaging protocol of cardiac MRI examination Scout images 57          |
| Figure 39. Image of a vertical long axis58                                      |

| Figure 40. Image of a horizontal long axis 58                             |
|---------------------------------------------------------------------------|
| Figure 41. Image of a basal short axis                                    |
| Figure 42. Planning of the pulmonary artery                               |
| Figure 43. Planning of the right pulmonary artery60                       |
| Figure 44. Planning of the left pulmonary artery61                        |
| Figure 45. Planning of the ascending aorta                                |
| Figure 46. Tracing endocardium of the right ventricle                     |
| Figure 47. Phase Contrast of the pulmonary artery64                       |
| Figure 48. Interventricular septum position71                             |
| Figure 49. Linear Regression graph systolic pulmonary artery pressure and |
| right ventricle ejection fraction73                                       |
| Figure 50. Linear regression graph mean pulmonary artery pressure and     |
| right ventricle stroke volume73                                           |
| Figure 51. Linear regression graph a mean pulmonary artery pressure and   |
| right ventricle stroke volumeindex74                                      |
| Figure 52. Linear regression graph mean pulmonary artery pressure and the |
| right ventricle mass74                                                    |
| Figure 53. Linear regression graph systolic pulmonary artery pressure and |
| the left ventricle end systolic volume75                                  |
| Figure 54. Linear regression graph systolic pulmonary artery pressure and |
| left ventricle end diastolic volume75                                     |
| Figure 55. Linear regression systolic pulmonary artery pressure and left  |
| ventricle end systolic volume index76                                     |
| Figure 56. Linear regression graph mean pulmonary artery pressure and the |
| right ventricular mass index76                                            |
| Figure 57. Linear regression graph systolic pulmonary artery pressure and |
| left pulmonary artery stroke volume                                       |


| Figure 58. Linear regression graph right ventricle stroke volume | and the |
|------------------------------------------------------------------|---------|
| pulmonary artery stroke volume                                   | 77      |
| Figure 59-98. Representaive cases                                | 80-108  |

## **ABBREVIATIONS**

| AA Ascending Aorta                   |                          |
|--------------------------------------|--------------------------|
| AT Acceleration Time                 |                          |
| <b>AV</b> Atrioventricular           |                          |
| <b>BSA</b> Body Surface Area         |                          |
| <b>cm</b> Centimeter                 |                          |
| CMRI Cardiac Magnetic Resona         | ince Image               |
| <b>CT</b> Computed Tomography        |                          |
| CTEPH Chronic Thromboemboli          | c Pulmonary Hypertension |
| <b>DNA</b> Deoxyribonucleic Acid     |                          |
| <b>ECG</b> Electrocardiographic Gat  | ting                     |
| <b>EDV</b> End Diastolic Volume      |                          |
| <b>EDVI</b> End Diastolic Volume Inc | lex                      |
| <b>EF</b> Ejection Fraction          |                          |
| <b>ESV</b> End Systolic Volume       |                          |
| <b>ESVI</b> End Systolic Volume Inde | ex                       |
| ET Ejection Time                     |                          |
| <b>FOV</b> Field Of Viwe             |                          |
| <b>HLA</b> Horizontal Long Axis      |                          |
| ICBT Intercostobronchial Trun        | ık                       |
| IPAH Idiopathic Pulmonary Ar         | terial Hypertension      |
| IVS Interventricular Septum          |                          |
| <b>Kg</b> Kilogram                   |                          |
| LAD Left Anterior Descending         | 5                        |

| LCx   | Left Circumflex Artery                    |
|-------|-------------------------------------------|
| LPA   | Left Pulmonary Artery                     |
| LTGA  | Levo Transposition of Great Arteries      |
| LV    | Left Ventricle                            |
| m     | Meter                                     |
| Max   | Maximum                                   |
| Min   | Minimum                                   |
| mm    | Millimeter                                |
| MPA   | Main Pulmonary Artery                     |
| MPAP  | Mean Pulmonary Artery Pressure            |
| MRA   | Magnetic Resonance Angiography            |
| MRI   | Magnetic Resonance Imaging                |
| PA    | Pulmonary Artery                          |
| PAP   | Pulmonary Artery Pressure                 |
| PAPVR | Partial Anomalous Pulmonary Venous Return |
| PC    | Phase Contrast                            |
| PCW   | Pulmonary Capillary Wedge Pressure        |
| PH    | Pulmonary Hypertension                    |
| PR    | Pulmonary Regurge                         |
| PVR   | Pulmonary Venous Return                   |
| Qp:Qs | Pulmonary : Systemic Output Ratio         |
| RHC   | Right Heart Catheterization               |
| ROC   | Receiver Operating Characteristics        |
| RPA   | Right Pulmonary Artery                    |
| RV    | Right Ventricle                           |
| RVH   | Right Ventricular Hypertrophy             |
|       |                                           |

| RVOT | Right Ventricle Outflow Tract      |
|------|------------------------------------|
| SA   | Short Axis                         |
| SD   | Standard Deviation                 |
| Sec  | Second                             |
| SPAP | Systolic Pulmonary Artery Pressure |
| SSFP | Steady State Free-Precession       |
| SV   | Stroke Volume                      |
| SVC  | Superior Vena Cava                 |
| SVI  | Stroke Volume Index                |
| T    | Tesla                              |
| TE   | Time of Eccho                      |
| TR   | Time of Repetition                 |
| VENC | Velocity Encoding                  |
| VLA  | Vertical Long Axis                 |
| VMI  | Ventricular mass index             |



## Introduction

Pulmonary hypertension (PH) is clinically defined as the presence of mean pulmonary artery pressure (mPAP)  $\geq$ 25mm Hg at rest measured at right heart catheterization (RHC). Further detailed assessment using blood testing, echocardiography, lung function, and multimodality imaging is key to identifying the cause of PH, which defines both prognosis and treatment (Swift et al., 2012).

Pulmonary hypertension results from a variety of conditions which affect the pulmonary circulation. A progressive rise in pulmonary vascular resistance (PVR) results from obliteration or obstruction of the pulmonary vascular bed. This rise in PVR leads to a rise in pulmonary arterial pressure (PAP) and eventually these vascular changes result in increased afterload to the right ventricle (RV), which initially undergoes adaptive hypertrophy, but later experiences maladaptive dilatation, fibrosis and valve regurgitation resulting in right ventricular failure and early death in the majority of patients (Bogaert et al., 2012).

The functional capacity of the RV is a major prognostic determinant in pulmonary hypertension. It is unknown why some patients with markedly elevated pulmonary artery pressure maintain well-preserved cardiac function for several years, while others with equal or less severe PH suffer rapidly progressive right heart failure. One factor that has hindered the understanding of right ventricular performance in patients with PH has been a lack of techniques that give a reliable picture of right ventricular morphological and functional change in the face of increasing outflow obstruction (McLure and Peacock., 2009).

#### **Chapter 1: Introduction**

Patients with PH usually present with dyspnea, fatigue, syncope and angina like pain more frequent in advanced disease. Symptoms are non-specific and the delay from initial symptoms to diagnosis is often up to 2 years. As a result damage to the pulmonary arterial vasculature is already quite advanced by the time of diagnosis (Swift et al., 2014).

Despite significant improvements in the diagnosis and treatment of PH, this disease remains to be associated with a profound reduction of quality of life and survival *(Rosenkranz, 2015)*.

Over the last decade cardiac magnetic resonance imaging (CMRI) has become accepted as the gold standard technique for the assessment of the proximal pulmonary circulation and the morphology and function of the RV (McLure and Peacock., 2009).

CMRI is a noninvasive tool that provides high-resolution, three dimensional images of the heart. It provides information about right heart structure, volumes and function that is not readily obtained via other methods, such as echocardiography and RHC *(Andrew et al., 2013).*