

EVALUATION OF CARDIAC GLOBAL FUNCTION USING REDUCED NUMBER OF MR IMAGES

By

Hossam Ahmed Mohammad El-Rewaidy

A Thesis Submitted to the
Faculty of Engineering - Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

EVALUATION OF CARDIAC GLOBAL FUNCTION USING REDUCED NUMBER OF MR IMAGES

By Hossam Ahmed Mohammad El-Rewaidy

A Thesis Submitted to the
Faculty of Engineering - Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

Under the Supervision of

Assoc. Prof. Dr. Ahmed S. Fahmy

.....

Associate Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

EVALUATION OF CARDIAC GLOBAL FUNCTION USING REDUCED NUMBER OF MR IMAGES

By Hossam Ahmed Mohammad El-Rewaidy

A Thesis Submitted to the
Faculty of Engineering - Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Biomedical Engineering and Systems

Examining Committee
Prof. Dr. Mohammed Emad Rasmy (Internal Examiner)
Assoc. Prof. Dr. Ayman Mahmoud Khalifa (External Examiner)
Assoc. Prof. Dr. Ahmed Samir Fahmy (Thesis Main Advisor)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Hossam Ahmed Mohammad El-Rewaidy

Date of Birth:22/7/1990Nationality:Egyptian

E-mail: hossam.elrewaidy@gmail.com

Phone: +201275295146

Address: 22 Saad Zaghloul, Horeen, Berkat Al-Sabaa,

Monofiya

Registration Date: 1/10/2013
Awarding Date:/.....

Degree: Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Assoc. Prof. Dr. Ahmed S. Fahmy

Examiners:

Prof. Dr. Mohamed Emad Rasmy (Internal Examiner)

Assoc. Prof. Dr. Ayman Mahmoud Khalifa (External Examiner)

Assoc. Prof. Dr. Ahmed Samir Fahmy

Title of Thesis:

Evaluation of the Cardiac Global Function using Reduced Number of MR Images

Key Words:

Cardiac Global Function, Volume Calculation, Surface Reconstruction, Right Ventricle Segmentation, Active Shape Model, Geometric Models, Cardiac Modeling.

Summary:

Evaluating the heart global function from magnetic resonance images is based on estimating a number of functional parameters such as the left ventricular (LV) and right ventricular (RV) volumes, LV and RV masses, ejection fraction, and stroke volume. Estimating these parameters requires: First, accurate segmentation of the main cardiac champers, LV and RV. LV segmentation can be done by many techniques with a plausible performance; However, RV segmentation is still a challenging problem due to the complex shape of the RV, presence trabecular muscles and low tissue-to-blood contrast. Second, accurate calculation of the volumes enclosed by the inner and outer surfaces of the LV and RV chambers. Currently, the volume calculation is achieved through acquisition and segmentation of a large number of short-axis (SAX) crosssections of the LV and RV, which is time-consuming, expensive and causing patient inconvenience. Unfortunately, reducing the number of the acquired cross-sections results in undersampling the LV surfaces and hence increases the errors of calculating the volume. In this thesis, we propose two packages of novel methods in both RV segmentation and volume calculation from small number of MR slices. In RV segmentation, an Active Shape/Appearance Model (ASM) based system is introduced for accurately segmenting the RV from MR short axial (SAX) images. The RV shape variations are independently modeled using two separate (dual) ASM models in the Bookstein domain. In order to better segment the low contrast regions at the apex, the method is extended for multiple-2D images where the variations of all cardiac levels are incorporated in a single model. For the volume calculation, new method based on fusing the long axial (LAX) and SAX views of the heart is presented. In this method, the LAX contour is used to swipe the SAX contours to fill in the missed LV surface between the SAX slices. Furthermore, novel geometrical models that combine information from SAX and (LAX) views are invented. The results from 25 datasets and 5 CT-based phantom showed that our methods outperform most of the used methods in the literature.

Insert photo here

Acknowledgment

Firstly, I would like to express my sincere gratitude to my advisor *Dr. Ahmed Fahmy* for the continuous support of my Master's study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Master's study.

Besides my advisor, I would like to thank *Dr. Ayman Khalifa*, *Dr. Inas Yassine* and *Dr. El-Sayed Ibrahim*, for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives.

I thank also all my fellows and friends at Cairo and Nile universities, and Diagnosoft Inc. for the stimulating discussions and support.

Last but not the least, I would like to thank my family: my parents and, my brothers and sisters for supporting me spiritually throughout writing this thesis and my life in general. I would like also to express my special heartfelt gratitude to my mother for her sincere praying for me all the time.

Dedication

To those persons who inspired me and changed my life for better.

Table of Contents

ACKNOWLEDGMENT	I
DEDICATION	. II
TABLE OF CONTENTS	III
LIST OF TABLES	VII
LIST OF FIGURESV	'III
NOMENCLATURE	.XI
ABSTRACTX	Ш
CHAPTER 1 : INTRODUCTION	1
1.1. MOTIVATION AND CHALLENGES	3
1.1.1. Right Ventricle Segmentation	3
1.1.2. Volume Calculation and Global Function Assessment	
1.2. OBJECTIVES AND CONTRIBUTIONS	5
CHAPTER 2 : BACKGROUND	9
2.1. CARDIAC ANATOMY AND DISEASES	9
2.1.1. Cardiac Morphology and structure	9
2.1.1.1. Left Ventricle	
2.1.1.2. Right Ventricle	
2.1.1.3. Right Atrium	
2.1.1.4. Left Atrium	
2.1.2. Cardiac Global Function Parameters	
2.1.2.1. End-diastolic Volume	
2.1.2.2. End-systolic Volume	
2.1.2.4. Heart Rate	
2.1.2.5. Cardiac Output	
2.1.2.6. Ejection Fraction	12
2.1.2.7. Left Ventricular Mass	
2.1.3. Heart Diseases	
2.1.3.1. Heart Muscle Diseases	
2.1.3.1.1. Cardiac or Ventricular Hypertrophy	
2.1.3.1.2. Dilated Cardiomyopathy.	
2.1.3.1.3. Restrictive Cardiomyopathy (RCM) 2.1.3.2. Ischemic Heart Diseases (IHD)	
2.2. CARDIAC MRI MODALITY	. 13

	CINE MRI	
	Multiple Breath-hold Misregistration Artifacts	
	2. Partial Volume Effect (PVE)	
	3. Right Ventricular Shape Complexities	
	Tagged MRI	
	THODS AND MODELS USED IN VOLUME CALCULATION	
	Modified Simpson's Method	
	Simpson's Disc Method	
	Modified Simpson's Model (Rule)	
	Hemisphere-Cylinder Model	
	Ellipsoid Biplane Model	
	Ellipsoid Single Plane Model	
	Modified Ellipsoid Model (Teichholz)	
2.4. ACT	TIVE SHAPE AND APPEARANCE MODELS	23
	Shape Models	
	Selection of landmark points	
	Shapes Alignment	
	Gray-Level Appearance Model	
	Matching Algorithm	
	Multi-Resolution Framework	
CHAPTEI	R 3 : SEGMENTATION OF THE RIGHT VENTRICLE IN MR IMAG	ES USING
DUAL AC	TIVE SHAPE MODEL IN THE BOOKSTEIN COORDINATES	29
3.1. INT	RODUCTION	29
3.1. INT	RODUCTION	29 30
3.1. INTI 3.2. MA 3.2.1.	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling	29 30
3.1. INTI 3.2. MA 3.2.1. 3.2.2.	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting	29 30 31
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3.	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates	29 30 31 32
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4.	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training	29 30 31 32
3.1. INTI 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5.	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV	29 30 31 32 34
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6.	RODUCTION	29 30 31 32 34 34
3.1. INTI 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation	29 30 31 32 34 34 36 37
3.1. INTI 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES	RODUCTION	29 30 31 32 34 34 36 37
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. Con	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION	29 30 31 32 34 34 36 37
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION NCLUSION R 4: THREE-DIMENSIONAL MODELING OF THE RIGHT VENT	29 30 31 32 34 36 37 39
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V	TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION NCLUSION RCLUSION RCLUSION RAIATIONS IN MRI IMAGES USING MULTIPLE TWO-DIME	2930313234363739 **RICULAR ENSIONAL**
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION NCLUSION R 4: THREE-DIMENSIONAL MODELING OF THE RIGHT VENT	2930313234363739 **RICULAR ENSIONAL**
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V DUAL AC	TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION NCLUSION RCLUSION RCLUSION RAIATIONS IN MRI IMAGES USING MULTIPLE TWO-DIME	2930313234363739 **RICULAR ENSIONAL**40
3.1. INTI 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V DUAL AC 4.1. INTI	TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION NCLUSION R 4: THREE-DIMENSIONAL MODELING OF THE RIGHT VENT VARIATIONS IN MRI IMAGES USING MULTIPLE TWO-DIME	29 30 31 32 34 36 37 39 *******************************
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V DUAL AC 4.1. INTE 4.2. MA	RODUCTION TERIALS AND METHODS	2930313234363739 PRICULAR ENSIONAL404040
3.1. INTI 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V DUAL AC 4.1. INTI 4.2. MA 4.2.1.	RODUCTION TERIALS AND METHODS Conventional Active Shape Modeling Contour Splitting Alignment in the Bookstein Coordinates Dataset and Training Segmentation of the RV Testing and Validation SULTS AND DISCUSSION NCLUSION RA 4: THREE-DIMENSIONAL MODELING OF THE RIGHT VENT VARIATIONS IN MRI IMAGES USING MULTIPLE TWO-DIME TIVE SHAPE MODEL FRAMEWORK RODUCTION	2930313234363739 **TRICULAR ENSIONAL**404042
3.1. INTI 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V DUAL AC 4.1. INTI 4.2. MA 4.2.1. 4.2.1.	RODUCTION TERIALS AND METHODS	2930313234363739 **RICULAR ENSIONAL40404242
3.1. INTE 3.2. MA 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.3. RES 3.4. CON CHAPTEI SHAPE V DUAL AC 4.1. INTE 4.2. MA 4.2.1. 4.2.1. 4.2.1.	RODUCTION	2930313234363739 **RICULAR ENSIONAL404042424242

4.2.2.2. Testing Phase	44
4.2.3. Weighted Covariance Matrix	47
4.2.4. Surface Splitting	47
4.2.5. Bookstein Alignment	48
4.2.6. Dataset and Training	
4.2.7. Segmentation of the RV	50
4.2.8. Testing and Validation	51
4.3. RESULTS AND DISCUSSION	
4.4. Conclusion	56
CHAPTED 7 ACCUDATE ECTIMATION OF THE MYOCADDITA	CLODAL
CHAPTER 5 : ACCURATE ESTIMATION OF THE MYOCARDIUM	
FUNCTION FROM REDUCED MAGNETIC RESONANCE IMAGE ACQUIS	1110NS57
5.1. Introduction	57
5.2. MATERIALS AND METHODS	58
5.2.1. Segmentation of the Myocardium Contours	58
5.2.2. Compensation of the Respiratory Motion	
5.2.3. Approximating the LV Surface using LAX Contour	
5.2.4. Correction of the Off-Axis Rotation	
5.2.5. Surface Reconstruction	
5.2.6. Phantom 1: Simulation of Multi Breath-hold Dataset	
5.2.7. CT-based Phantom Experiment	64
5.2.8. Real Data Experiment	
5.3. RESULTS AND DISCUSSION	
5.3.1. Compensation of the Respiratory Motion	
5.3.2. Validation of LV Volume Calculation	
5.4. APPLICATION: CALCULATION OF GLOBAL FUNCTION FROM TAGGED MR IMAGES	
5.5. CONCLUSION	
5.5. CONCLUSION	09
CHAPTER 6: IMPROVED ESTIMATION OF THE CARDIAC GLOBAL	FUNCTION
USING COMBINED LONG AND SHORT AXIS MRI IMAGES OF THE HEAD	RT70
6.1. Introduction	70
6.2. MATERIALS AND METHODS	
6.2.1. Trapezoidal Model	
6.2.2. Model-Free Formulation	
6.2.2.1. Volume Calculation by Surface Points Estimation	
6.2.3. Oblique LAX Compensation	
6.2.4. Multiple LAX Slices Framework	
6.2.5. Model Validation using CT-based Phantoms	
6.2.6. Model Validation using Real MRI Data	
6.3. RESULTS AND DISCUSSION	
6.3.1. Validation using CT-based Phantoms	
6.3.2. Validation using Real MRI Data	
6.4. Conclusion and Future Work	

CHAPTER 7 : CONCLUSIONS AND FUTURE WORK	89
7.1. Conclusions	89
7.2. Future Work	90
REFERENCES	91

List of Tables

Table 2-1: Normal values and ranges of the cardiac global function parameters for both Right and
Left Ventricles
segments31
Table 3-2: Mean ± Standard deviation of the MAD, Hausdorff, and Dice Index measures of the
segmented contours at basal, mid-cavity, and apical levels using the proposed and conventional
ASM methods with respect to the ground truth
Table 4-1: For the York DB, mean ± standard deviation of the MAD, Hausdorff, and Dice Index
measures of the segmented contours at basal, mid-cavity, and apical levels using the proposed and
conventional ASM methods with respect to the ground truth.
Table 4-2: For the Local DB, mean ± standard deviation of the MAD, Hausdorff, and Dice Index
measures of the segmented contours at basal, mid-cavity, and apical levels using the proposed and
conventional ASM methods with respect to the ground truth
Table 4-3: Comparison between the conventional 2D, 3D, and the multiple-2D ASM55
Table 5-1: Percentage cardiac volume error (mean±SD) computed from different number of slices
using different techniques
Table 5-2: Percentage error (mean±SD) of LV volume, EF and Stoke volume computed by
proposed method
Table 6-1: Percentage error (mean±SD) of LV surface volume due to the reproducibility
experiments for both model-free and trapezoidal methods
Table 6-2: Percentage error (mean±SD) of LV surface volume due to the motion artifacts of the
different simulated breath-holds experiments84
Table 6-3: Percentage error (mean±SD) of LV surface volume (LVVs), EF, SV and myocardial
LV mass (LVM) computed by the proposed methods and the mSimp methods calculated at
different numbers of slices 4, 6, 8, 10 and 12
Table 6-4: Percentage error (mean±SD) of LV surface volume using different models that using
either two, or three slices, and the corresponding model-free and trapezoidal methods at the same
number of slices

List of Figures

Figure 1-1: 3D schematic plot for both the left and right Ventricles of the heart are shown in red and blue volumes, respectively. A stack of short axis planes (i.e. the black rectangles) are dividing the heart into set of axial chunks; also, the two chamber (2CH) and four chamber (4CH) long axis planes (rectangles in green color) are cutting the heart through only the left ventricle and both left and right ventricles, respectively.
Figure 2-1: Cardiac anatomy, the detailed internal structures of its four chambers, and the main arteries and veins. The position and orientation of the heart relative to the human chest are at the top left [125].
Figure 2-2: Hypertrophied heart with changes in cardiac geometry and myocardial mass with respect to a normal heart [126]
Figure 2-3 : Dilated heart with alternation of chambers size and changes in cardiac geometry with respect to a normal heart [127]
Figure 2-4 : Cardiac displacement due to different breath-holding and its effect on the MR imaging planes. In the first breath-holding, slice #1 acquired at its defined true the position (at the left green line). Nevertheless, after respiration, a different breath-hold caused of moving the heart to a different position than it was in the first breath-hold. So that, slice #2 is acquired at a different position (at the right green line) than its expected position (at the dashed cyan line)
heart reconstructed in 3D
Figure 2-8: (a) Right ventricular shape variability across the MRI cross sections of different heart subjects, (b) Partial volume effect and trabeculations at the apical MRI slices of the right ventricle.
Figure 2-9: Examples of Tagged MRI images with both single tags (vertical and horizontal tags, respectively from the left) and Grids (third image).
Figure 2-10: Methods and models used for volume calculation of the left ventricle from one, two, three, or multiple cardiac MRI views. These models depend on approximating the left ventricle in either SAX (green contours), or LAX (red contours) views or both, with a specific geometric shape.
Figure 2-11: Landmark points are selected at the high curvature regions of the object

Figure 2-13: Multi-resolution framework is constructed of a number of levels wherein, the first
level contains the original version of the image and each level next contains a down-sampled
version of the same image
Figure 3-1: RV contour is divided into two segments (septal and free wall) in each short-axis
image
Figure 3-2: The transformation of the RV shape to the Bookstein 2D Coordinates can be
performed in two steps: 1) registering the two insertion points, , q_1 and q_2 to points 0 and 1 on the
x-axis; and 2) normalizing each point on the original RV shape with respect to the distance
between the two insertion points. The RV shape can be transformed back in the Cartesian
Coordinates by reversing the Bookstein transformation
Figure 3-3: Flowchart for RV segmentation using the proposed ASM framework, The same
framework can be used for either FW or SP parts
Figure 3-4: Improved initial placement of the RV mean shape in conventional ASM, where the
location of the two RV insertion points is used to estimate proper scaling, rotation, and translation
parameters to form the mean shape
Figure 3-5: The RV segmentation results for two cases using the proposed and conventional
ASM models at the initial, fifth, and twentieth iterations. The figure shows three different cross-
sections of the RV at the basal, mid-cavity, and apical levels
Figure 4-1: Training of the multiple 2D ASM framework comprises dividing the RV shapes into
L levels from basal to apex, aligning RV contour in the Bookstein's coordinates, and stacking the
aligned contours of each RV shape in one vector
Figure 4-2: The RV shape is divided into two surfaces (septal and free-wall) and the contours of
each surface are concatenated separately to form a multiple 2D shape model
Figure 4-3 : Transformation of the RV shapes from the Cartesian coordinates to the Bookstein 2D
Coordinates can be performed in two steps: 1) registering the two insertion points, q_1 and q_2 (in
Cartesian coordinates) to points 0 and 1 on the x-axis (in Bookstein coordinates); and 2)
normalizing each point on the original RV shape with respect to the distance between the two
insertion points. The RV shape can be transformed back in the Cartesian Coordinates by reversing
the Bookstein transformation.
Figure 4-4: The RV segmentation results for two cases using the proposed and conventional
ASM models at the initial, fifth, and twentieth iterations. The figure shows three different cross-
sections of the RV at the basal, mid-cavity, and apical levels.
Figure 4-5: RV segmentation results for some apical cross-sections using the proposed multiple-
2D ASM and the conventional ASM. 54
Figure 4-6: RV covariance matrix for a case of three levels (basal, mid-cavity, and apical) before
(at left) and after (at right) weighting
Figure 5-1: Flow chart showing the Misregisteration correction steps
Figure 5-2 : SAX, LAX contours and the intersection line, L, it also shows the errors e ₁ , e ₂
between C _{SAX} and C _{LAX}
Figure 5-3: Showing the difference between linear interpolation of C_{SAX}^{i} (in black lines) and
rotated LAX contour (in red contours) to approximate non-linear curvatures of LV61
Figure 5-4 : (a) The trajectory of C_{LAX} points before and after compensation; the trajectory before
is a circle but after compensation, the trajectory should be the Cisax. (b) The Off-axis rotation
misalignments d_1, d_2 ; in order to compensate for any point p , the shift d is calculated from the
equation $d = h_1(d_1 - d_2)/(h_1 + h_2)$ 61

Figure 5-5: The LV geometry after triangulation. Different rotated LAX contours (shown in red)
can be estimated by intersecting a plane with the surface.
Figure 5-6: The proposed method, first, the SAX and LAX slices are acquired, segmented and
stacked in its 3D positions and orientations. The LAX contour is then rotated between pairwise
each two consecutive SAX contours. In the fourth step, the new generated LAX points are
returned to the SAX contours. Delaunay Triangulation is performed to the whole geometry and the
volume is estimated. Finally the difference between the proposed method approximation and the
mSimp approximation are compared63
Figure 5-7: The numerical phantom generated by linear interpolation of SAX slices in red and the
interpolated points in green
Figure 5-8: Cardiac CT volume, a) LV CT volume that used in re-slicing operation. b) Showing
the directions of LAXs and SAXs planes for the new slices
Figure 5-9: Respiratory motion correction using the proposed method. From left to right: true
location of slices, after simulating respiratory motion, and after correction
Figure 5-10: The error (mean±SD) of the estimated volume at different number of SAX slices
using the proposed method (phantom experiment)67
Figure 5-11: The error (mean±SD) of the estimated volume at different number of SAX slices
using the proposed method (real MRI data).
Figure 6-1: 3D schematic plot for the LV showing the SAX contours (blue) and the LAX contour
(red). A number of N SAX image planes (purple areas) can divide the LV into N chunks. Green
areas annotate the LAX cross-sectional area of the different chunks
Figure 6-2: Rotation of a half LAX slice area around the axis of the LV chunk, h, with
infinitesimal angle, $d\theta$, results into a wedge-like shape. Its volume can be determined knowing the
rotated area, the distance from the axis to the LAX contour segment, and the rotation angle74
Figure 6-3: 3D schematic plot for the LV showing the SAX contours (blue) and the LAX contour
(red). A number of N SAX image planes (purple areas) can divide the LV into N chunks. Green
areas annotate the LAX cross-sectional area of the different chunks
Figure 6-4: The integration term $(\int_0^h [d(z,0)]^2 dz)$ along the height of this segment (h) is
o
numerically approximated by normalized summation of the squares of LAX diameters along h78 Figure 6-5: Oblique LAX contour (in green) generates a larger intersection area with the cardiac
chunk. The correction factor of such area depends on the inclination angle (Φ) between the axis of
LV and the oblique LAX plane
Figure 6-6: Multiple LAX slices divide each pair of SAX contours to set of segments at the
angles bisector lines (dashed plue lines). each segment is defined by its LAX part and closeset two
Figure 6-7: Cardiac CT reconstructed volume re-sliced to generate different cardiac cross-
sections: SAX, horizontal LAX (i.e. 4-chamber), vertical LAX slice (i.e. 2-chamber), and two
LAX slices (rotated ±200 from the horizontal LAX plane)
using the proposed methods and the mSimp method (phantom experiment)
Figure 6-9: Error (mean±SD) of the estimated volume at different number of slices using the
proposed methods and the mSimp method (real MRI data)
Figure 6-10 : Bland-Altman plot for the LV volume calculation showing the agreement between the model free formulation and the ground truth at 4 and 6 client (in the first row); and the
the model-free formulation and the ground truth at 4 and 6 slices (in the first row); and the
trapezoidal model with respect to the ground truth at 4 and 6 slices (in the second row); and at the last row, the agreement between mSimp and the ground truth at 4 and 6 slices
1ast 10w, the agreement detween monny and the ground truth at 4 and 0 snees

Nomenclature

2-CH Two Chambers

4-CH Four Chambers

AP Anterior-Posterior direction

ASM Active Shape Model

CO Cardiac Output

DCM Dilated Cardiomyopathy

EDV End-Diastolic Volume

EF Ejection Fraction

ESV End-Systolic Volume

FR Free Wall

HR Heart Rate

IHD Ischemic Heart Diseases

LAX Long Axial

LR Left-Right Direction

LV Left Ventricle

LVM Left Ventricular Mass

MAD Mean Absolute Value

MP Mid-Papillary Muscles

MRI Magnetic Resonance Imaging

mSimp Modified Simpson's Method

MV Mitral Valve

PCA Principal Component Analysis

PDM Point Distribution Model

PVE Partial Volume Effect

RCM Restrictive Cardiomyopathy