Comparison of Three Different Hearing Aid Fitting Formulae to Verify the Benefit of Artificial Intelligence Based Formula

Thesis

Submitted For Fulfilment Of The Requirements For MD degree In Audiology

By:

Dr. Rabab Ahmed Koura

(M.B., B.Ch.; M.Sc.)

Supervisors:

Prof. Dr. Mohamed Ibrahim Shabana

Professor of Audiology Faculty of Medicine, Cairo University.

Dr. Abeir Osman Dabbous

Assistant Professor of Audiology, Faculty of Medicine, Cairo University.

Dr. Tarek El-Dessouky

Lecturer of Audiology, Faculty of Medicine, Beni-Suef University

Kasr El-Aini Faculty of Medicine Cairo University 2012

Abstract:

BACKGROUND: There is a great need to provide the patients with the most suitable hearing aid for a better life.

OBJECTIVE: To compare National Acoustic Laboratories non-linear version 1 (NAL-NL1), desired sensation level version 5 (DSLv5) to a manufacture-specific NAL-NL1-based fitting formula in a ChannelFreeTM artificial intelligence parallel processing HA to verify its benefit.

METHODS: The study comprised 30 adults and children with bilateral moderate to severe sensorineural hearing loss, monaurally fitted with non-linear HA. Comparisons were based upon aided speech intelligibility in quiet and in noise, aided sound field thresholds, functional gain across frequencies and functional performance in real life using APHAB, COSI and GHABP questionnaires. RESULTS: The 3 formulae have significantly improved speech discrimination in both adults and children. The 3 formulae have significantly improved functional performance in real life speech communication with the NAL-NL1-based formula showing the greatest degree of benefit and improvement of listening needs followed by NAL-NL1-then DSL. But, amplification with the 3 formulae increased aversiveness to environmental sounds. Children reported significant benefit using DSL while adults reported significant benefit using NAL and NAL-NL1-based formulae. SPIN test correlated well with real life speech communication.

CONCLUSION: The 3 fitting rationales have equally improved intelligibility with variable degrees of improvement in real life speech communication with preferences of DSL in children and NAL-NL1 and the manufacture-specific NAL- NL1-based formula in adults.

Key Words: adults, artificial intelligence, ChannelFreeTM, children, DSL, fitting rationale, non-linear hearing aids, NAL-NL1, prescriptive formulae.

Acknowledgement

First and foremost, thanks to God, the most beneficent and most merciful.

I am greatly thankful and grateful to prof. Dr. Mohamed Ibrahim Shabana Prof. of Audiology, Cairo University, for his great effort, productive guidance and valuable instructions.

My deep thanks are also extended to , Dr Abeir Dabbos, assistant professor of Audiology , Cairo University to her I owe many valuable remarks and a lot of precious time, patience and effort.

I also express my appreciation and gratitude towards Dr.Tarek el Doussoky ,lecturer of Audiology , Bani -suef University , for his authentic guidance and assistance.

Finally, I would like to express my great thanks to my husband who was always supportive during the conduction of all steps of this work.

CONTENTS

ACKNOWLEDGEMENT	i
LIST OF TABLES	iii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	. xiii
INTRODUCTION	
AIM OF THE WORK	
REVIEW OF LITERATURE	
I) HEARING AIDS FOR REHABILITATION OF HEARING LOSS	•••••
(1) Problems of Hearing Loss	1
(2) Digital solutions in Hearing Aids	
(a) Adaptive Directionatity(b) Speech Enhancement	
(c) Noise Reduction	
(d) Adaptive Feedback Management	
(3) Artificial Intelligence for Rehabilitation of Hearing Loss	
(a) Definitions of AI	
(b) Approaches of AI and AI-Based Decision Making In Hearing Aid	
(4) Modern Applications of Multi-channel Non-Linear Amplification	
I. Compression	
II. Fitting Rationale	
1) Primary Parameters	
(i) NAL-NL1, NAL-NL2	
(ii) DSL [i/o] DSL v5	
(iii) FIG6	36
(iv) IHAFF	38
2) Secondary Parameters	51
(i) Channels	51
(ii) Cross over frequencies	51
(iii)Attack and Release time	53
(iv) Knee-points	
III. Core Features of Modern Amplification	. 55
1) Multi-channel, Nonlinear Amplification	55
2) Adaptation Management	56
3) Intelligent, Fully Automatic Operation	
4) Intelligent Use of Directionality	
5) Intelligibility-based Noise Reduction	
6) Device Identity Options	
7) Open Ear Acoustics	
IV. Frequency Compression	
V. Channel Free Processing	
II) VERIFICATION OF HEARING AID FITTING	69
(1) Subjective Methods	69
(a) Self reported questionnaires	69
(b) Sound Field Tests	72
(2) Objective Methods (Real ear measurements)	
MATERIAL AND METHODS	76
RESULTS	
DISCUSSION	
CONCLUSION and RECOMMNDATION	
SUMMARY	
REFERENCES	. 187

ARABIC SU	JMMARY	1
APPENDIX	A	4
	В	
	C	

LIST OF TABLES

Table (1): Summary of target changes in DSL v5.0
Table (2): Gender distribution in the studied group
Table (3): Distribution of hearing aid experience in the studied group
Table (4): Pure tones average in the group under study
Table (5): Word discrimination score (WDS) and uncomfortable level
(UCL) at different frequencies of the right ear in adults and
children included in this study
Table (6): Dynamic range (DR) of adults and children included in this
study92
Table (7): Aided sound field threshold (ASFT) in dBHL in the 3 hearing
aid fitting formulae in children. 94.
Table (8): The aided sound field threshold (ASFT) in the 3 hearing aid
fitting formulae in adults95
Table (8b): Mean and SD of the Functional gain in adults different frequencies using the
3 hearing aid fitting formulae in adults96
Table (8c): Mean and SD of the Functional gain in adults different
frequencies using the 3 hearing aid fitting formulae in children97
Table (9): Comparison of functional gain using the 3 different hearing aid
fitting formulae in adults and children
Table 10: Comparison of functional gain using the 3 different hearing aid
fitting formulae in experienced and non-experienced hearing aid
users
Table 11: Comparison of functional gain using the 3 different hearing aid
fitting formulae in males and females
Table (12): Comparison of compression ratio at moderate and high input
sounds in the low, mid and high frequency bands, using the 3
hearing aid fitting formulae in adults

Table (13) Comparison of compression ratio (CR) using the 3 hearing aid
fitting formulae in children and adults
Table (14): compression ratio (CR) using the 3 hearing aid fitting formulae
in experienced and non-experienced hearing aid users
Table (15): Mean and SD of the comparison between the un-aided and
aided speech discrimination using each of the 3 hearing aid
fitting formulae in children
Table (16): Mean and SD of the comparison between the un-aided and
aided speech discrimination using each of the3 hearing aid
fitting formulae in adults
Table (17): Comparison among the 3 different hearing aid fitting formulae
in children using COSI questionnaire, with regard to the final
ability with hearing aid in improving the 5 client needs
Table (18): Comparison among the 3 different hearing aid fitting formulae
in adults using COSI questionnaire, with regard to the final
ability with hearing aid in improving the 5 client needs
Table (19): Comparison of the degree of change in the 5 reported needs of
COSI questionnaire among the 3 fitting hearing aid formulae in
the children under study
Table (20): Comparison of the degree of change in the 5 reported needs of
COSI questionnaire among the 3 fitting hearing aid formulae in
the adults under study
Table (21): Comparison of the degree of change in the 5 reported needs of
COSI questionnaire between adults and children using Bernafit119
Table (22: Comparison of the degree of change in the 5 reported needs of
COSI questionnaire between adults and children using NAL 120
Table (23): Comparison of the degree of change in the 5 reported needs of
COSI questionnaire between adults and children using DSL 121

Table (24): comparison of APHAB subscales without the hearing aid and	
with the hearing aid fitted with Bernafit in the adult	23
Table (25): comparison of APHAB subscales without the hearing aid and	
with the hearing aid fitted with NAL-NL1 in the adult	4.
Table (26): comparison of APHAB subscales without the hearing aid and	
with the hearing aid fitted with DSL in the adult	24
Table (27): comparison of APHAB subscales without the hearing aid and	
with the hearing aid fitted with Bernafit in the children	25
Table (28): comparison of APHAB subscales without the hearing aid and	
with the hearing aid fitted with NAL-NL1 in the children	6.
Table (29): comparison of APHAB subscales without the hearing aid and	
with the hearing aid fitted with DSL in the children	26
Table (30): APHAB subscales comparing cases with hearing aid fitted to	
each of the 3 fitting formulae in children	27
Table (31): APHAB subscales comparing cases with hearing aid fitted with	
each of the 3 fitting formulae in adults	29
Table (32): APHAB scores in adults and children	31
Table (33): APHAB subscales in experienced and non-experienced hearing	
aid users	32
Table (34): Benefit in score of the APHAB in children comparing the 3	
different HA fitting formulae	33
Table (35): Benefit in score of the APHAB in adults comparing the 3	
different HA fitting formulae	34
Table (36): HA benefit scored by APHAB using the 3 different HA fitting	
formulae between adults and children	6.
Table (37): HA benefit scored by APHAB scores using the 3 different HA	
fitting formulae between experienced and non-experienced	
hearing aid users	38
Table (38): Total GHABP scores of the pre-fitting of the 4 pre-determined	
conditions in both adults and children	40

Table (39): Total post-fitting GHABP scores of adults in this study
Table (40): Total post-fitting GHABP scores of the of children in this study 142
Table (41): Comparison between adults and children using Bernafit
hearing aid fitting formula with regard to the GHABP Scores 144
Table (42): Comparison between adults and children using NAL hearing
aid fitting formula with regard to the GHABP Scores 144
Table (43): Comparison between adults and children using DSL hearing aid
fitting formula with regard to the GHABP Scores 145
Table (44): Comparison between experienced and non-experienced hearing
aid users using Bernafit hearing aid fitting formula with regard
to the GHABP Scores
Table (45): Comparison between experienced and non-experienced
hearing aid users using NAL hearing aid fitting formula with
regard to the GHABP Scores
Table (46): Comparison between experienced and non-experienced hearing
aid users using DSL hearing aid fitting formula with regard to
the GHABP Scores
Table (47): Comparison between males and females using Bernafit hearing
aid fitting formula with regard to the GHABP Scores
Table (48): Comparison between males and females using NAL hearing aid
fitting formula with regard to the GHABP Scores
Table(49): Comparison between males and females using DSL hearing aid
fitting formula with regard to the GHABP Score
Table (50): Pearson's correlation coefficient (r) results of the aided speech
discrimination in noise (SPIN) at different SNR and aided
speech discrimination in quiet and improvement in speech

discrimination, in relation to the aided APHAB scores and the
HA benefit measured by the APHAB149
Table (51): Pearson's correlation coefficient (r) results of the APHAB
scores without the hearing aid and Duration of hearing loss
(years), Age (years), and dynamic range (DR) at different
frequencies
Table (52): Pearson's correlation coefficient (r) results Bernafit
compression ratios with improvement in speech discrimination
and APHAB scores
Table (53): Pearson's correlation coefficient (r) results NAL compression
ratios with improvement in speech discrimination and
APHAB scores
Table (54): Pearson's correlation coefficient (r) results DSL compression
ratios with improvement in speech discrimination and APHAB
scores
Table (55): Pearson's correlation coefficient (r) results Bernafit
compression ratios with the total GHABP post-fitting Scores 154.
Table (56): Pearson's correlation coefficient (R) results NAL compression
ratios with the total GHABP post-fitting Scores
Table (57): Pearson's correlation coefficient (r) results DSL compression
ratios with the total GHABP post-fitting Scores
Table (58): Pearson's correlation coefficient (r) of the GHABP scores with
the functional gain of the hearing aid fitted with Bernafit
Table (59): Pearson's correlation coefficient (r) of the GHABP scores with
the functional gain of the hearing aid fitted with NAL
Table (60): Pearson's correlation coefficient (r) of the GHABP scores with
the functional gain of the hearing aid fitted with DSL

Table (61): Pearson's correlation coefficient (r) results of the 3 formulae	
compression ratios at low frequency band and the UCL and DR	
at 500 Hz	160
Table (62): Pearson's correlation coefficient (r) results of the 3 formulae	
compression ratios at mid frequency band and the UCL and DR	
at 1000 &2000 Hz	161
Table (63): Pearson's correlation coefficient (r) results of the 3 formulae	
compression ratios at high frequency band and the UCL and DR	
at 4000 Hz	162

LIST OF FIGURES

<u>Fig</u>	ure: Title:	Page:	
1.	The slope of the intensity present among adjacent speech frequencies	24	
2.	Insertion gain prescribed by the FIG6 method	37	
3.	An example of the three-point I-O curve, for a frequency of 2 kHz,		
	prescribed by the VIOLA software on the basis of the IHAFF		
	procedure	39	
4.	Gain prescribed for a flat audiogram by IHAFF, DSL, Fig6, and NAL	-	
	NL1	42	
5.	Gain prescribed for a reverse audiogram by IHAFF, DSL, Fig6, and		
	NAL-NL1	43	
6.	Gain prescribed for a gently sloping audiogram by IHAFF, DSL, Fig6	, ,	
	and NAL-NL1.	44	
7.	Gain prescribed for a precipitous, high-frequency hearing loss by DSI	٠,	
	NAL-NL, Fig6, and IHAFF	45	
8.	Gain prescribed for a steeply sloped, high-frequency hearing loss by		
	DSL, NAL-NL, Fig6, and IHAFF	46	
9.	DSL and NAL-NL1 REAR output targets for flat hearing losses	49	
10.	DSL and NAL-NL1. REAR output targets for gently sloping hearing		
	losses	50	
11.	DSL and NAL-NL1. REAR output targets for steeply sloping hearing		
	losses	50	
12.	Block diagram of Bernafon's ChannelFree processing system	66	
13.	The Lifestyle Profile is divided into 4 main categories	80	
14.	The patient's audiogram and loudness discomfort threshold data first		
	entered into the fitting software	81	
15.	The Inizia IN3CPX BTE hearing aid selected	82	

16.	In the Tuning screen in Oasis, each hearing aid user (whether child or	
	adult) fitted with one of the 3 fitting algorithms under study	
	(NAL- NL1, DSL and Bernafit)	83
17.	Compression thresholds for the low and high frequency bands set as	
	prescribed by the corresponding formula software	84
18.	Gender distribution in the studied group	89
19.	Cause of hearing loss among studied group	90
20.	The pure tone audiogram of the study group	91
21.	Dynamic range (DR) of adults and children the studied group	93
22.	Mean of Aided sound field threshold in the 3 fitting formulae in	
	children	94
23.	Mean of Aided sound field threshold in the 3 fitting formulae in adults	95
24.	Mean of Functional gain in adults different frequencies using the 3	
	hearing aid fitting formulae	98
25.	Mean of Functional gain in children at different frequencies using the	
	3 hearing aid fitting formulae	98
26.	Functional gain at 500, 1000, 2000, 4000 kHz in adults and children	
	using Bernafit	100
27.	Functional gain at 500, 1000, 2000, 4000 kHz in adults and children	
	using NAL	100
28.	Functional gain at 500, 1000, 2000, 4000 kHz in adults and children	
	using DSL	101
29.	Functional gain at 500, 1000, 2000, 4000 kHz in experienced and non-	
	experienced hearing aid users using Bernafit	103
30.	Functional gain at 500, 1000, 2000, 4000 kHz in experienced and non-	
	experienced hearing aid users using NAL	103
31.	Functional gain at 500, 1000, 2000, 4000 kHz in experienced and non-	
	experienced hearing aid users using DSL	104

32.	The compression ratio at moderate and high input sounds, in the low,	
	mid and high frequency bands, using the 3 hearing aid fitting	
	formulae in adults	106
33.	Adults first priority need in COSI	113
34.	Children first priority need in COSI.	113
35.	Final ability in children with the hearing aid fitted to the 3 formulae	116
36.	Final ability in adults with the hearing aid fitted to the 3 formulae	116
37.	Global APHAB and APHAB subscales scores comparing adults	
	without hearing aid and with hearing aid fitted with each of the 3	
	fitting formulae Bernafit, NAL-NL1, DSL	123
38.	Global APHAB and APHAB subscales scores comparing children	
	without hearing aid and with hearing aid fitted with each of the 3	
	fitting formulae Bernafit, NAL-NL1, DSL	125
39.	Listening difficulty by APHAB global and subscales scores: using the	
	3 different hearing aid fitting formulae in children	128
40.	Listening difficulty by APHAB global and subscales scores: using the	
	3 different hearing aid fitting formulae in adults	130
41.	Listening difficulty by APHAB scores in children and adults using the	
	3 different hearing aid fitting formulae	131
42.	Benefit in score of the APHAB using the 3 different HA fitting	
	formulae in adults	135
43.	Benefit in score of the APHAB using the 3 different HA fitting	
	formulae in children	135
44.	Benefit in score of the APHAB subscales in adults and children using	
	the 3 different HA fitting formulae	137
45.	Benefit in global APHAB score in adults and children, using the 3	
	different hearing aid fitting formulae	137
46.	Benefit in global APHAB score in experienced and non-experienced	
	hearing aid users using the 3 different hearing aid fitting formulae	139

47.	Total GHABP scores of the 4 pre-determined conditions questions	
	with the 3 fitting hearing aid formulae in adults	143
48.	Total GHABP scores of the 4 pre-determined conditions questions	
	with the 3 fitting hearing aid formulae in children	143