IMMUNOLOGICAL EVALUATION OF SUBLINGUAL IMMUNOTHERAPY IN BRONCHIAL ASTHMA

Thesis

Submitted for partial fulfillment of The M.D. Degree in Microbiology

Presented by

Fatma Mohamed Ali Otiba

M.B., B.ch. Ain Shams University M.Sc. Cairo University

Supervised by

Prof. Dr. Kamal Maurice Hanna Prof. Ehsan Yahia Sabry

Professor of Microbiology & Immunology P

Faculty of Medicine

Cairo University

Professor of chest diseases

Faculty of medicine

Cairo University

Prof. Hamida Gohar

Prof. Zeinab Abd El Khalek

Professor of Microbiology & Immunology

Faculty of Medicine

Cairo University

Professor of Microbiology & Immunology

Faculty of Medicine

Cairo University

ACKNOWLEDGMENT

First of all, I want to **THANK GOD** for supporting me and guiding me throughout my life.

I would like to express my profound gratitude to Professor Doctor/ Kamal Maurice Hanna, **Professor of Microbiology & Immunology, Cairo University** for his most valuable advises and support all through the whole work and for dedicating much of his precious time to accomplish this work.

I am also grateful to Professor Doctor/ Hamida Gohar,

Professor of Microbiology & Immunology, , Cairo University, for her unique effort, considerable help, assistance and knowledge she offered me throughout the performance of this work.

My special thanks and deep obligation to Professor Doctor/ Zeinab Abd El Khalek, Professor of Microbiology & Immunology, Cairo University, Faculty of Medicine, for her continuous encouragement, considerable help and supervision and kind care.

I am also grateful to Professor Doctor/ Ehsan Yahia Sabry, **Professor of Chest diseases, Cairo University**, for her continuous encouragement and supervision and kind care

LIST OF CONTENTS

	itle P	age No.
Abstra	ct	12
Introdu	ction	14
Aim of	the work	18
Review	of Literature	20
Chapte	r 1 : Asthma	21
Hist	ory	22
Risl	Factors	24
Prev	ention of asthma symptoms and exacerbation	25
Epid	emiology of asthma	29
Clas	sification of asthma	30
He	rogenity of asthma	32
Chapte	r 2: The genetic contribution to asthma	40
Epi	helial barrier function	41
Env	ironmental sensing and immune detection	42
Th	mediated cell response	42
Tiss	ue response	43
Chapte	r 3: Immnopathogensis of asthma	45
Alle	gen uptake and procesing	47
Alle	gen presentation	48

IgE synthesis	49
Early phase asthmatic reaction	50
Late phase asthmatic reaction	52
Airway wall epithelium	61
Airway remodeling	66
Vascular remodeling	69
Neural remodeling	70
Chapter 4: Cytokines in asthma	72
Type 2 T-helper cell-like cytokines	74
Chemokine	78
Pro-inflammatory cytokines	79
Immunomodulatory cytokines	81
Chapter 5: Immunotherapy of asthma	87
T-cell inhibitor	88
Th-2 cytokine inhibitors	90
Anti-Eosinophilic strategy	93
Anti TNF-α strategies	94
Strategies aimed at IgE and mast cells	95
Therapeutic approach that use regulatory T-cell	97
Chapter 6: Sublingual Immunotherapy in asthma	99
Clinical efficacy of SLIT	101
Safety and adverse events of SLIT	103

Proposed mechanisms of SLIT	104
Specific properties of the oral immune system	106
Indication of SLIT	110
Compliance of SLIT	111
Future direction	111
Methodology	115.
Results	127
Discussion	140
Conclusion	150
Recommendations	151
English Summary	152
Refference	157
Arabic Summary	1-3

List of figures

Figure 1: Heterogeneity of airways disease
Figure 2: Eosinophilic and noneosinophilic
Figure 3: Heterogeneity of airway inflammation
Figure 4: The genes implicated by candidate gene
association and GWA studies
Figure 5: Asthma pathogenesis
Figure 6: Mast cell infiltration of airway smooth muscle 51
Figure 7: Airway inflammation and remodeling in asthma 74
Figure 8: Cytokine network involved in the pathogenesis
of asthma
Figure 9: CpG DNA 89
Figure 10: Allergic immune response and mechanisms of SCIT 106
Figure 11: Fate of the allergen following sublingual administration
Figure 12: Mean number of symptomatic days per week before and after intervention in the three studied groups
Figure 13: Mean number of night awakening days per week before and after intervention in the three studied groups 130
Figure 14: Mean number of corticosteroid daily doses per week before and after intervention in the three studied groups 132
Figure 15: Mean number of β -2 agonist daily doses per week before and after intervention in the three studied groups 132

Figure 16: Mean IgE level before and after intervention	
three studied groups	135
Figure 17: Mean IL-10 level before and after intervent	tion in the
three studied groups	135
T1 40 3 5 T1 41 11 0 1 0 1 0 1 1	
Figure 18: Mean IL-4 level before and after intervention	on in the
three studied groups	
	136

List of Table

Table 1: Monoclonal antibodies (mAb) and fusion proteins in treatment of asthma and allergic diseases.	
Table 2: Descriptive Demographic data for different study gro	oups. 128
Table 3: Comparison of symptoms of Asthma before and after intervention among studied group	
Table 4: Comparison of Asthma medication before and after among studied group	
Table 5: Difference in the level of immunological markers begatter intervention among different studied group	133
Table 6: Comparison of clinical and immunological parameter	r among
placebo, SCIT and SLIT groups	137

List of Abbreviations

AHR	Air way hyperresponsiveness
ASM	Air way smooth muscle cell
APCS	Antigen presenting cells
BAL	Bronchoalveolar lavage
BHR	Bronchial hyperresponsiveness
CCR	Chemokine receptor
CCL	Chemokine ligand
DBPC-RCTs	Double blind placebo control randomized control trials
DCs	Dendritic cells
D.farinae	Dermatophagoides farina
EAR	Early phase asthmatic reaction
EBV	Epstein Bar Virus
EGF	Epidermal growth factor
FceRI	High-affinity IgE Fc receptor
FEV	Forced expiratory volume
FGF	Fibroblast growth factor
FLG	Filaggrin
ICS	Inhaled corticosteroid
GM-CSF	Granulocyte macrophage colony stimulating factor
GWA	Genome wide association
HB-EGF	Related molecules to epidermal growth factor
HLMC	Human long muscle cell
HRCT	High resolution completed tomography
HSP	Heat shock protein
ΙΕΝ-γ	Interferon gamma
IL	Interleukin

LAR	Late phase asthmatic reaction
LABA	Long acting B2 agonist
LTs	Leukotriens
MCP-3	Monocyte chemotactic protein-3
MCP-4	Monocyte chemotactic protein-4
MDC	Machrophage derived chemokine
МНС	Major histocompalibility complex
MIP-1a	Macrophage inflammatory protein
MMP-9	Matrix metallopeptidase-9
mRNA	messenger RNA
NGF	Nerve growth factor
iNKT	Invariant natural killer T cell
OVA	Ovalbumin
PAF	Platelets activating factor
PBMCs	Peripheral blood mononuclear cells
PDGF	Platelets derived growth factor
PGE2	Prostaglandin E2
RANTES	Regulated on activation, normal T-cell expressed and
	secreted
RDBPC	Randomized double-blind placebo-controlled
SCIT	Subcutaneous allergen immunotherapy
SLIT	Sublingual immunotherapy
SMD	Standardized mean difference
SNPs	Single nucleotide polymorphisms
TARC	Thymus and activation regulated chemokine
TGF-β	Transforming growth factor-β
Th	T helper cell

TLR	Toll-like receptor
TNF-α	Tumor necrosis factor alpha
Treg	T regulatory cell
TSLP	Thymic stromal lymphopiotein

ABSTRACT

Background: Allergen specific immunotherapy is aimed at modifying the natural history of allergy by inducing tolerance to the causative allergen. In its traditional, subcutaneous form, immunotherapy has complete evidence of efficacy in allergic asthma. However, subcutaneous immunotherapy (SCIT) has a major flaw in side effects, and especially in possible anaphylactic reactions, and this prompted the search for safer ways of administration of allergen extracts. Sublingual immunotherapy (SLIT) has met such need while maintaining a clinical efficacy comparable to SCIT.

OBJECTIVES: We aimed to investigate immunological efficacy of mitespecific SLIT and SCIT versus a placebo in asthmatic patients who were sensitized to house dust mite: *Dermatophagoides farinae* (*D.farinae*).

METHODS: This study is a prospective, randomized, three parallel group studies, comparing the clinical and immunological efficacy of SLIT and SCIT, with (D.farinae) allergen to that of placebo in treatment of patients with allergic asthma and a proven allergy to (D.farinae) by skin prick test. 60 patients mono-sensitized to (D.farinae) were randomized to receive either SLIT (n=30), SCIT (n=15) or Placebo (n=15). Symptom and medication score, serum (D.farinae) specific immunoglobulin E (IgE), IL4, IL-10 and IFN-γ levels were evaluated at base line and after three months.

RESULTS: SLIT and SCIT demonstrated a significant reduction in asthma symptom and medication score. A significant reduction of serum-specific D.farinae IgE in SLIT and SCIT were observed. Serum IL-10 and IFN- γ significantly increased in SLIT and SCIT compared with placebo, whereas serum IL-4 significantly decreased. No statistically significant change was observed when SLIT compared to SCIT either in clinical or immunological parameter.

CONCLUSION: Both SLIT and SCIT demonstrated clinical and immunological improvement compared to placebo in asthmatic patients monosensitized to *D. farinae*.

Keywords: Allergic asthma, efficacy, specific immunotherapy, sublingual immunotherapy, interleukine

Introduction

INTRODUCTION

Despite remarkable advances in diagnosis and long-term management, asthma remains a serious public health problem worldwide and is now one of the most common chronic diseases in developed countries. Asthma is characterized by reversible airway obstruction. bronchial hyperresponsiveness, and airway inflammation. The key pathological features of asthma are highly complex with multiple features that include infiltration of the airways by activated lymphocytes, eosinophils, and neutrophils; mast cell degranulation; and mucous gland hyperplasia. Asthmatic epithelium exhibits sloughing and/or denudation and cilia dysfunction together with collagen deposition in the epithelial subbasement membrane area. Asthma pathology is associated with the release of pro-inflammatory substances including lipid mediators, inflammatory peptides, chemokines, cytokines, and growth factors. In addition to infiltrating leukocytes, structural cells in the airways, including smooth muscle cells 'endothelial cells, fibroblasts, and airway epithelial cells, are all important sources of asthma causing or enhancing mediators (Walsh and McDougall, 2007).

Inhaled glucocorticoids (ICS) are first-line therapy for asthma due to their potent anti-inflammatory properties that primarily result in reduced numbers of airway inflammatory cells and their associated mediators. The symptoms of most asthmatics are satisfactorily controlled by the regular use of ICS with or without the addition of a long-acting β 2-agonist (LABA). They reduce airway hyperresponsiveness (AHR), disease exacerbations, and hospitalizations while improving lung function and quality of life. However, ICS are symptomatic medications requiring life-time therapy for the patient, and are relatively non-specific in their actions while variations