

Evaluation of Post Interferon Therapy changes in Chronic HCV patients (Clinical, Doppler Ultrasonography and Histopathological study)

Thesis

Submitted for partial fulfillment of MD in tropical medicine

By Mohamed Karim Farouk Ashour MSc

Supervisors

Prof. DR. Gamal EL Dein Esmat Mohamed

Professor of Tropical Medicine Cairo University

Prof. DR. Iman Ismail Ramzy

Professor of Tropical Medicine Cairo University

Prof. DR. Maissa Elsaid Elraziky

Professor of Tropical Medicine Cairo University

Faculty of Medicine Cairo University 2012

Acknowledgement

First of all, Thanks to GOD, without his will, nothing could have been achieved.

My gratitude and acknowledgment to **Prof. Dr. Gamal Essmat** Professor of Tropical Medicine, Cairo University, for his support and endless advices and help. I wish one day to have his way of thinking and part of his perfectionism and part of his knowledge.

My deep thanks and appreciation to **Prof. Dr. Iman Ramzy** Professer of Tropical Medicine, Cairo University, for her strict supervision and revision of this work, she gave me much of her time, experience and extreme support, her valuable comments, efforts and collaboration were the causes to complete this work properly, so no words can express my gratitude to her.

I would like to thank **Prof.Dr. Maissa EL Razky**, Professeur of Tropical Medicine, Cairo University, for her extreme care, support, effort, time, kindness, guidance, friendly, and generous help, without her, experience, comments, this work could not be done. No words what so ever can fulfill what she deserve for everything she has done in this work and guidance in my life.

To all my professors, to whom I have the honor to belong, to my professors who welcomed me, who encouraged and supported me, who taught and advised me, who gave me their confidence, who trained me and pushed me forwards.

I wish to express my great appreciation to the friendliness, support and encouragement of all my colleagues in liver center and

Tropical medicine department, Cairo University, my deepest appreciation. Thanks for their help and endless support.

I'm greatly indebted and do not have sufficient words of expressing my deepest gratitude to my family for all their continuous help and encouragement. To my father Farouk Ashour (deceased) and my dear Aunt Zeinab Khorshed who passed away 8 months ago, May God Rest her soul. She has always given me endless support and care through my whole life, and encouraged me to continue and finish this work. I really owe all of them this hard work.

Last, but certainly not least, I owe to the patients included in this study, the whole of it and to all our Kasr El-Aini patients my own life. May God alleviate their sufferings and may all our efforts be just for their own benefit.

ABSTRACT

Egypt is the country with the highest HCV prevalence in the world. Prompt and effective treatment could postpone or interrupt the development of chronic hepatitis into liver cirrhosis. Accurate estimation of the disease severity is helpful for the evaluation of the therapeutic effect and the prognosis of the disease. Doppler sonography has opened a new window into the evaluation of vascular structures of the liver. Duplex sonography offers the opportunity to evaluate hepatic hemodynamics noninvasively.

<u>Aim of work:</u> To evaluate the changes in hepatic Doppler and abdominal ultrasound pre and post interferon therapy. Also to evaluate histological changes in liver biopsy pre and post treatment and their relation to hepatic Doppler and ultrasound findings.

Patients and methods: 50 patients with chronic HCV whom are fit to interferon therapy were subjected to complete history taking, thorough clinical examinations, laboratory investigations, abdominal ultrasonography and Doppler study of the portal and splenic veins. The laboratory tests were done serially and the Doppler and US were done before treatment and at week 72.

Results: Using multivariate logistic regression analysis, Doppler- derived indices, failed to introduce a Doppler parameter or indices to predict the response. From our study PVPV and PVMV correlates with the degree of hepatic fibrosis and could be used for the assessment of severity in chronic liver disease and

could be used as a non-invasive assessment of hepatic fibrosis or inflammation.

<u>Key words</u>: Doppler measurements– chronic HCV – interferon therapy.

Table of contents

Chapter	Page
Table of contents	I
List of figures	V
List of abbreviations	IX
Introduction	1
Aim of the work	5
1- Introduction to HCV and Doppler	6
2- Principles and physics of Doppler	11
3- Types of Doppler imaging	15
a- Continous wave Doppler	15
b- Pulsed wave doopler	15
c- Duplex Doppler imaging	16
d- Colour flow Doppler imaging	17
4- Technique for scanning of Doppler ultrasound	18
5- Measurements and indices of hepatic Doppler sonog	raphy26
6- Normal hepatic vasculature	35
7- Doppler in various hepatic conditions	42
a- Liver cirrhosis and portal hypertension	42
b- Portal vein thrombosis	58
c- Arterioportal and portal-hepatic venous fistula	a 60

Cha	apter	Page
	d- Portal vein and paraumbilical vein aneurysm	62
	e- Budd chiari syndrome	64
	f- Liver tumours	69
	g- Pre and post operative liver transplant Doppler	71
8- Dop	opler ultrasound in chronic hepatitis	76
9- Ultr	asound and diffuse liver disease	83
	a- Normal ultrasonography of liver	84
	b- Diffuse liver conditions	85
	c- Bright liver	86
	d- Acute hepatitis	88
	e- Chronic hepatitis	89
	f- Cirrhosis	91
	g- Schistosomiasis	95
	h- Hepatoduodenal lymph nodes	97
10-	Histopathology of hepatitis C	107
	a- The role of liver biopsy in chronic hepatitis C	107
	b- Histopathological changes in chronic hepatitis C	111
	c- Fibrosis	117
	d- Steatosis	120
	e- Staging, grading and histopathological scoring	
	of chronic hepatitis C	123

Table Of Contents

Chapter		Page	
11-	Patients and Methods	133	
12-	Results	138	
13-	Discussion	186	
14-	Summary and Conclusions	195	
15-	Recommendations	198	
16-	References	199	
	الملخص العربي		

List of Tables

Table)						P	age
<i>Table</i> Necroi	` '	Compar atory Chan		of	Scoring	Systems:	Pe	riportal 127
<i>Table</i> Necros		omparison	of Sc	oring	Systems:	Bridging ar	nd Co	nfluent 128
	• •	comparison Hepatocellu			•	Focal (Spo	otty) l	Lobular 129
Table	<i>(D):</i> Co	mparison of	Scorin	ng Sy	stems: Por	tal Inflamma	ation13	30
Table	<i>(E):</i> Co	mparison of	Scorin	ng Sy	stems: Fib	rosis		131
<i>Table</i> injury	<i>(F):</i> H∕	AI inflamma	tion so	cores	relate to	the grade o	f histo	ological 132
Table	(1): De	mographic f	eature	s of th	ne studied	50 patients.		138
<i>Table</i> studied	• •		for ac	quisiti	on of the	hepatitis C	virus	in the
Table	(3): sho	ows the clini	cal exa	amina	ition data			141
	. ,	aboratory reek72) in the		•	·	Interferon a	ınd R	ibavirin 142
Table	<i>(5):</i> Sh	ows the vira	l load	categ	ories prior	to treatment	I	143
Table	(6): Sh	ows HCV G	enotyp	e in t	he studied	50 patients		144
<i>Table</i> studied	• •	•	US fii	nding	s before a	nd after trea	atmen	t in the 146
		trasound mo				er and sple	en pr	ior and

Table F	Page
Table (9): Doppler measurements of the studied 50 patients post treatment	pre and
Table (10): Doppler parameters in SVR patients (36 patients) and after interferon treatment	before
Table (11): Doppler parameters in non responders (14 patients) post interferon therapy	ore and 153
Table (12): Comparison of the Doppler parameters in responders (14 patients) prior to therapy	ponders 155
Table (13): Doppler parameters in responders (36 patients) a responders (14patients) post interferon therapy	and nor 157
Table (14): Comparison of the histopathological findings of liver to done for the studied 50 patients prior to and after therapy	oiopsies 158
Table (15): Comparison of histopathological findings in the respatients (36 patients) pre and post therapy	spondei 159
Table (16): Comparison of the histopathological findings responder group (14 patients) pre and post interferon therapy	in nor
Table (17A): Comparison of Doppler parameters of the literatment according to fibrosis stage (Metavir fibrosis)	ver pre 162
Table (17B): Comparison of Doppler parameters of the spletreatment according to fibrosis stage (Metavir fibrosis)	een pre 163
Table (18A): Comparison of Doppler parameters of the live treatment in relation to fibrosis stage (Metavir fibrosis)	er pos

Table Page

 Table (18B):
 Comparison of hepatic vascular indices post treatment in relation to the fibrosis stage (Metavir fibrosis)
 166

 Table (18C):
 Comparison of the splenic Doppler parameters post treatment in relation to the Metavir fibrosis stages
 167

 Table (19A):
 Comparison of Doppler parameters of the liver presents.

Table (19A):Comparison of Doppler parameters of the liver pretreatment in relation to activity stage (Metavir activity)169

Table (19B): Comparison of Doppler parameters of the spleen pre treatment in relation to activity stage (Metavir activity) 170

Table (20A): Comparison of Doppler parameter of the liver post treatment in relation to activity stage (Metavir activity) 172

Table (20B): Comparison of Doppler parameter of the hepatic vascular indices post treatment in relation to activity stage (Metavir activity)173

Table (20C):Comparison of the splenic Doppler parameters posttreatment in relation to the Metavir activity stages175

Table (21): Comparison of Doppler parameters pre interferon therapy in chronic hepatitis (F1+F2) group 1 and cirrhotic patients (F3) group 2 according to Metavir fibrosis score

Table (22): Comparison of Doppler parameters post interferon therapy in chronic hepatitis (F0+F1+F2) group and cirrhotic patients (F3+F4) group

Table (23A):Comparison of the Doppler parameters of the liver pretreatment according to steatosis181

Table	Page
Table (23B): Comparison of the Doppler parameters of the	liver pre
treatment according to steatosis	182
Table (24A): comparison of the Doppler parameters of the	liver post
treatment according to steatosis	184
Table (24B): Comparison of the Doppler parameters of the	liver pre
treatment according to steatosis	185

List of Figure

Figures	Page
Figure (1): An ultrasound beam.	13
Figure (2): Sites for Doplex insonation of venous system	19
Figure (3): Helical flow.	21
Figure (4): showing the portal vein diameter.	26
Figure (5): showing the portal vein flow and monophasic particles.	attern of 27
Figure (6): showing portal vein peak velocity (22cm/sec).	28
Figure (7): Simplified representation of a portal vein flow was as seen on spectral Doppler display.	aveform 29
Figure (8) : showing the hepatic artery with calculated pulsitilit and resistive index.	ty index 30
Figure (9): showing the splenic artery measuring the splenic resistive index and splenic artery pulsitility index.	c artery 31
Figure (10): showing the hepatic vein with biphasic pattern.	32
Figure (11): Normal portal vein (PV) and hepatic artery (HA).	35
Figure (12): Spectral tracing of the portal vein shows a conmonophasic flow pattern.	ntinuous 36
Figure (13): normal hepatic vein waveform showing to waveform.	riphasic 38

Page

Figure (14): Normal hepatic artery Doppler flow.	39
Figure (15) : Normal flow direction of the spleinc vein a intrasplenic tributaries (blue) with a venous waveform on spleing.	
Figure (16): Transverse colour flow image of splenic artery (blu coeliac axis (red).	e) and 41
Figure (17): Changes of the portal vein flow profile in patient cirrhosis and/or portal hypertension.	ts with 44
Figure (18): Opposite flow directions in the portal vein and achievatic artery in a patient with cirrhosis and portal hypertension	•
Figure (19) : Longitudinal gray-scale (a) and color Doppler (b) is at gastroesophageal junction show tortuous venous channels	mages 46
Figure (20): Color and spectral Doppler ultrasonographic shows the coronary vein, appearing as a continuation of the vein in cephalic direction.	_
Figure (21): Patent paraumbilical vein in a patient with cir Transverse color Doppler US image shows hepatofugal flow portal vein branch	
Figure (22): Splenorenal shunt. Transverse color Doppler show a prominent splenic vein	image 49
Figure (23): Transrectal ultasound image shows multiple, too worm-like vessels	tuous, 50

Figures

Figures	Page
Figure (24): Pulsatile flow profile of the portal vein.	51
Figure (25) : Color Doppler image shows the hepatic veins. of the hepatic vein shows triphasic pattern.	Doppler 56
Figure (26) : Abnormal hepatic vein waveform showing loss of peak above the baseline (Biphasic).	normal 56
Figure (27): Spectral tracing shows a flat flow pattern	57
Figure (28) : Portal vein thrombosis. Longitudinal gray-so image through the <i>PV</i> shows low-level echoes with the right vein, difficult to identify as thrombus.	
Figure (29): Cavernous transformation of the portal vein. Long gray-scale image (a) Doppler image (b)	gitudinal 60
Figure (30) : Portohepatic shunt. Color Doppler image (a) shahormal communication between the <i>PV</i> and a <i>HV</i> .	ows an
Figure (31) : Portal vein aneurysm at the confluence of the smesenteric vein and the splenic vein. Color Doppler sono shows a portal vein aneurysm.	-
Figure (32): Color Doppler image shows no color signal in (arrow) (A). In (B) weak intraluminal color signals can be in consistent with non-occlusive thrombus.	
Figure (33) : Color Doppler image shows enlarged veins of clobe (CL). IVC is filled with low-level echoes consistent with the (arrows).	