Endovascular Abdominal Aortic Aneurysm Repair: Update

Essay

Submitted for the partial fulfillment of Master degree in general surgery

By Ramy Essam Abd El-fattah El-kady

(M.B.B.Ch.)
Ain Shams University

Under the supervision of

Prof. Dr. Mahmoud Sobhy Khattab

Professor of general & vascular surgery

Ain shams university

Dr. Sherif Mohammed Essam Al-Dein

Assistant professor of vascular surgery

Ain shams university

Dr. Abd El-Rahman Mohammed Ahmed

Lecturer of vascular surgery

Ain shams university

Faculty of Medicine Ain Shams University 2014

بننظ المعالجة

حيّل والله العظيم

All praise be to **Allah** and all thanks. He has guided and enabled me by His mercy to fulfill this Essay, which I hope to be beneficial for people.

I would like to express my deepest gratitude to **Prof. Dr.**Mahmoud Sobhy Khattab Professor of General and Vascular Surgery

Faculty of Medicine, Ain shams University, for his continuous

encouragement, his kind support and appreciated suggestions that

guided me to accomplish this work.

Words are not enough to express my greatest thanks and deepest appreciations to **Dr. Sherif Mohammed Essam Al-Dein** Assistant Professor of Vascular surgery, Faculty of Medicine, Ain shams University, for his comments, ideas and constrictive criticism.

Special thanks are extended to **Dr. Abd El-Rahman Mohammed**Ahmed Lecturer of Vascular Surgery, Faculty of Medicine, Ain shams
University, for his constant encouragement and advice whenever needed.

Finally I would like to express my gratitude to my family for their unending encouragement, care, love and their warm serenity that gave me the prospect to complete this work.

Ramy Essam El-Kady

	Contents	Page
1.	Introduction and aim of the work	1
2.	Epidemiology and screening	5
3.	Anatomy	13
4.	Pathophysiology	19
5.	Diagnosis	26
6.	Management	38
7.	EVAR	45
8.	EVAR versus Open surgical repair	93
9.	Summary	97
10	. Reference 1	00
11	. Arabic summary1	118

List of figures

Figure No.	Title	Page
1	Branches of abdominal aorta	13
2	Relations of abdominal aorta(1)	17
3	Relations of abdominal aorta (2)	18
4	MRA of saccular aneurysm	19
5	Three pathophysiological mechanisms	21
	that best characterize the process of	
	aneurysm formation.	
6	Atheroemboli from small abdominal	27
	aortic aneurysms (blue toe syndrome)	
7	Pulsatile abdominal aneurysm	30
8	Radiograph shows calcificationof the	31
	abdominal aorta.	
9	The lateral view clearly shows	32
	calcification of both walls.	
10	Ultrasonogram of a patient with an	33
	abdominal aorticaneurysm	
11	C.T abdomen showing AAA	34
12	MRI of a 77 years old man with AAA	36
13	Arteriogram demonstrates an	36
infrarenal AAA		
14	Basic decision-making algorithm.	38
15	Three-dimensional reconstructed	41
	images of this patient's aorta	
	demonstrate an infrarenal aneurysm	
	with severe tortuosity in the neck.	
	(unfit for EVAR)	
16	Incisions	42
17	Open repair (i)	43
18	Open repair (ii)	44
19	Closure	44
20	Ancure endograft	49
21	AneuRx system	50

Figure No.	Title	Page
22	Excluder system	51
23	Zenith system	52
24	Talent stent_graft	53
25	Powerlink system	54
26	Measurements	55
27	EVAR (TECHNIQUE) (i)	59
28	EVAR (TECHNIQUE) (ii)	60
29	EVAR (TECHNIQUE) (iii)	60
30	EVAR(tech.) (iv):	61
31	EVAR (TECHNIQUE) (v):	61
32	Type Ia endoleak and caudal	67
33	Types of endoleaks	69
34	A-D, Axial computed tomography (CT)	70
	slices show a proximal type I endoleak	
	(EL) (small arrows) that resulted in	
aneurysm rupture.		
35	Aortic cuff:	71
36	Sequence of the modified deployment 72	
technique of a "giant" Palmaz sten		
	the perirenal aorta for repair of a type	
	IA endoleak.	
37	Axial computed tomography (CT) slices	73
	show a type II endoleak (EL) (small	
	white arrows).	
38	Typical angiographic appearance of	74
	type II EL mainly fed by arc of Riolan	
	and retrogradely perfused inferior	
	mesenteric artery (IMA).	
39		
40	· • • • • • • • • • • • • • • • • • • •	
show intense enhancement with		
contrast material and are well perfuse		
	(open arrows), but there is obvious	
	contrast enhancement in aneurysmal	

Figure No.	Title	Page	
	sac (white arrows). In delayed phase,		
	EL is even more obvious (arrows).		
41	Plain abdominal film 24 months after	80	
	endovascular repair with a Talent		
	stent-graft system. Because of obvious		
	kink in left iliac limb, longitudinal		
	connect bar is broken (inside white		
	ring). This had no clinical		
	consequences		
42	Vascular Group standardized protocol	86	
	for endovascular aneurysm repair		
	(EVAR) of ruptured abdominal aortic		
	aneurysms		
43	Bifurcated fenestrated stent-graft	87	
44	Fenestrated anaconda device (diagram		
	& 3D CT reconstruction)		
45	Using a Perclose Prostar device in 80		
	endovascular aortic stent-grafting		
46	Suture-type closure device (Perclose) 90		
47	The remote catheter manipulator	92	
	(Right) and robotic work station (Left).		

List of Tables

No.	Title	Page
1	Association of gender, race, and smoking states with	8
	the prevalence of small and medium-sized AAAs	
	among 73, 451 US military veterans aged 50 to 79	
	years.	
2	Risk factors for detection of an unknown abdominal	9
	aortic aneurysm 4 cm in diameter or less during	
	ultrasound screening	
3	Screening guidelines	12
4	Branches of abdominal aorta	14,15
5	Annual AAA rupture risk in relation to size	42
6	Types of endovascular grafts	48
7	Suggested Ancillary Equipment for EVAR	58
8	Classification of types of endoleaks	68
9	Summary of Diagnostic Value of Currently Applied	84
	Imaging Modalities in Follow-Up After Endovascular	
	Repair	

Abbreviations

AAA	Abdominal Aortic Aneurysm		
ASA	American Society Of Anesthesia Classification		
CAD	Coronary Artery Disease		
CEUS	Contrast Enhanced Ultra Sound		
CFA	Common Femoral Artery		
CM	Contrast Media		
CT	Compued Tomography		
ECM	Extra Celluar Matrix		
EL	Endoleak		
EVAR	Endovascular Abdominal Aortic Aneurysm Repair		
FEVAR	Fenestrated Endovascular Aortic Aneurysm Repair		
GI	Gastrointestinal		
IMA	Inferior Mesenteric Artery		
IVC	Inferior Vena Cava		
MMPS	Matrix Metalloproteinases		
MRA	Magnetic Resonance Angiogram		
PEVAR	Percutanous Endovascular Aortic Aneurysm Repair		
PTFE	Polytetrafluoroethylene		
REVAR	Ruptured Endovascular Aortic Aneurysm Repair		
r-AAA	Ruptured Abdominal Aortic Aneurysm		
TIMPS	Tissue Inhibitor of Metalloprotinase		
US	Ultra Sonography		
VSMCS	Vascular Smooth Muscle Cells		

EPIDEMIOLOGY

Abdominal aortic aneurysms are generally a disease of elderly white males. AAAs increase steadily in frequency after age 50 years, are 5 times more common in men than in women, and are 3.5 times more common in white than in African American men (*Brady et al., 2000*).

In the year 2000 approximately 34 million people age 65 and over lived in the United States, constituting 12.6% of the population.1 By 2050, the number is expected to grow to almost 79 million and represent 20% of the population. (Day JC, 1996)

With the "baby boom" generation reaching age 65 starting in 2011, patients of advanced age represent one the fastest growing populations and will drive growth in the demand for surgical services. (*Etzioni DA et al., 2003*)

As life expectancies rise, more octogenarians with abdominal aortic aneurysms (AAA) are expected. Although morbidity and mortality rates for elderly patients (80 years) undergoing AAA repair remain greater than in younger patients ,data supports elective repair compared with emergent surgical management which is associated with dramatically greater mortality rates. (Giles KA et al., 2009)

Aneurysms of infrarenal aorta are by far the most common arterial aneurysms encountered in clinical practice. They occur 2–6 times more frequently than do thoracic aneurysms. Other aneurysms are frequently associated in patients with aortic aneurysm including common or internal iliac aneurysms in 41% and femoropopliteal aneurysms in 15% of patients. Popliteal aneurysms, are markers of AAA as AAA can be found in about 8% of patients who presented with unilateral popliteal aneurysm and in 30% of patients who have bilateral popliteal aneurysm. In patient with carotid atherosclerosis there was 10% incidence of AAA, in other group of patient with tortorus internal carotid artery, 40% incidence of AAA was found. In men AAAs begin to occur at about age 50 years while in women incidence near age of 60 years. (Melton et al., 2004).

Overall, the age adjusted incidence is 4 to 6 folds higher in men than in women for both asymptomatic and ruptured AAAs. A significant increase in the incidence of asymptomatic AAAs has been noted during the 1990s, in part because of increased case finding due to more frequent use of ultrasonography and other abdominal imaging modalities. (Wilmink et al., 2000).

For patients over age 50 years, the incidence of AAA rupture is much higher because the risk of rupture increases dramatically with age with an incidence of 76 per 100,000 person-years for men and 11 per 100,000 person-years for women over 50 years of age, giving a male- female ratio of 4.8: 1 (Wilmink et al., 2000).

The median age at rupture was 76 years for men and 81 years for women. The median AAA size at rupture was 8 cm, but 4.5% of the ruptured AAAs were less than 5 cm in diameter (measured at autopsy or during operation). The overall mortality rate from rupture was 78%, and three fourths of these deaths occurred outside the hospital. Interestingly, most from ruptured AAAs, like those from coronary artery disease, occur in winter months (sterpetti et al., 2005).

Prevalence of AAAs in a given population depends on risk factors that are associated with AAAs, including older age, male gender, white race, positive family history, smoking, hypertension, hypercholesterolemia, peripheral vascular occlusive disease, and coronary artery disease (Alcorn et al., 2006).

Although these risk factors are associated with increased AAA prevalence, they may not be independent predictors and may be markers rather than causes of AAA disease. Of these risk factors, however, age, gender, and smoking have the largest impact on AAA prevalence (Lee et al., 2007).

Table (1): Association of gender, race, and smoking states with the prevalence of small and medium-sized AAAs among 73, 451 US military veterans aged 50 to 79 years. (Lederle et al., 2004)

Race	e Sex Smoking status Prevalence pretest probable (%)		-	
			>3 cm	>4 cm
White	Male	Smoker Nonsmoker	5.9 1.9	1.9 0.04
White	Female	Smoker Nonsmoker	1.9 0.6	0.3
Black	Male	Smoker Nonsmoker	3.2 1.4	0.8 0.1
Black	Female	Smoker Non smoker	1.3 0.3	0.2

Table (2): risk factors for detection of an unknown abdominal aortic aneurysm 4 cm in diameter or less during ultrasound screening (*Lederle et al., 2004*)

Risk factor	Odds ratio
Increased risk	
Smoking history	5.6
Family history of AAA	2.0
Older age (per 7-year interval)	1.7
Coronary artery disease	1.6
High cholesterol level	1.5
COPD	1.3
Height (per 7-cm interval)	1.2
Decreased risk	
Abdominal imaging within 5 years	0.8
Deep vein thrombosis	0.7
Diabetes mellitus	0.5
Black race	0.5
Female gender	0.2

- Odds ratio: indicates relative risk compared to patients without that risk factor.
- <u>COPD</u>: chronic obstructive pulmonary disease.
 (Lederle et al., 2004).

Of patients undergoing AAA repair, 15% to 25% have a first-degree relative with a clinically apparent AAA compared with only 2% to 3% of age-matched control patients without AAAs (*Verloes et al., 2006*).

Conversely, and more clinically relevant, approximately 7% of siblings of patients with AAAs have a clinically apparent AAA (*Blanchard*, 2002).

Incidence of ruptured aneurysms:

Elective repair is currently recommended for most AAA larger than 4.5 to 5.0 cm diameter while small, asymptomatic AAA carry substantially lower risk of rupture (i.e. approximately 2% to 5% for those <4.0 cm diameter), at least 75% of these lesions continue gradually to expand. Currently, more than 45,000 elective operations are performed for AAA each year in United State alone, and 15.000 persons die unexpectedly from ruptured AAA (Hollier et al., 2002).

> Incidence of mortality:

The overall mortality rate for ruptured aneurysms is still over 90%, and despite many advances in surgery and critical care, operative mortality rates range from 50% to 70%. While the aneurysm repair, has operative mortality rates below 5% when performed under elective conditions (Zarins and Harris 2007).