Phenotypic Detection of Metallo-β -Lactamases Production in Clinical Isolates of Gram Negative Bacilli

Thesis

Submitted for partial fulfillment of Master degree in Medical Microbiology and Immunology

Submitted By

Amira Esmail Abdelhamid Makram Allah

M.B.B.Ch, Ain Shams University

Under supervision of

Prof. Dr. Tahani Abdelhamid Mohammed

Professor of Medical Microbiology and Immunology Faculty of Medicine Ain Shams University

Dr. Rasha Ahmed Reda Nasr

Assistant professor of Medical Microbiology and Immunology Faculty of Medicine Ain Shams University

Dr. Mohamed Shawky khater

Lecturer of Geriatric Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010-2011

الكشف المظهري عن انتاج محللات البيتا لاكتام الفلزية في المعزولات الاكلينيكية للعصيات سالبة الجرام

رسالة توطئة للحصول على درجة الماجستير في الميكروبيولوجيا الطبية والمناعة مقدمة من

الطبيبة/ أميرة اسماعيل عبد الحميد مكرم الله

بكالوريوس الطب و الجراحة كلية الطب جامعة عين شمس تحت اشراف

اد/تهائي عبد الحميد محمد استاذ الميكروبيولوجيا الطبية والمناعة

سناد الميكروبيولوجيا الطبية والمناعة كلية الطب- جامعة عين شمس

د/رشا أحمد رضا نصر

استاذ مساعد الميكروبيولوجيا الطبية والمناعة كلية الطب جامعة عين شمس

د/محمد شوقی خاطر

مدرس طب و صحة المسنين كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١-٢٠١٠

Summary and conclusions

Metallo- β lactamases have recently emerged as one of the most worrisome resistance mechanisms owing to their capacity to hydrolyze with the exception of aztreonam, all β -lactams including carbapenems. Their genes are carried on highly mobile elements, allowing easy dissemination and are difficult to detect, posing significant risks due to their ability to participate in horizontal MBL gene transfer. There are no standardized methods for detecting MBLs carrying organisms and despite PCR being highly accurate and reliable, its accessibility is often limited to reference laboratories. Several non molecular techniques have been studied, all taking advantage of the enzyme's zinc dependence by using chelating agents, to inhibit its activity.

The present study aimed to evaluate imipenem- EDTA CDT and imipenem -EDTA DDST (in comparison to MBLs Etest) as simple reliable inexpensive methods for phenotypic detection of MBLs production by Gram negative bacilli.

This study included 115 isolates of Gram negative bacilli obtained from various clinical samples including urine, pus from wounds, LRT samples, burn exudates, blood, vaginal discharge, purulent ascitic fluid, purulent pleural effusion and ear discharge. The most common isolated pathogen was *Ps. aeruginosa* (39%), followed by *A. baumanni* (19%), then *E.coli* (15.7%), *Klebsiella* (13%), *Proteus* (12%) and *Serratia* (1%).

Out of the 115 Gram negative isolates, 31 (27%) showed resistance to imipenem (16 isolates of *Ps. aeruginosa*, 12 *A. baumannii*, 2 *E.coli spp.* and 1 *Klebsiella spp.*). The most common samples from which the imipenem resistant isolates were isolated were pus from wounds (29%), followed by urine and LRT samples (22.6%) then burn exuadate (16%), blood

List of contents

Title	Page
Introduction	1
Aim of the work	4
Review of literature:	
Antibiotic Resistance in Gram Negative Bacilli	5
Beta Lactamases In Gram Negative Bacilli	24
Metallo Beta Lactamases	50
Patients and Methods	66
Results	86
Discussion	106
Summary and Conclusion	118
Recommendations	120
References	121
Arabic summary	

List of Figures

Figure	Title	
1	Potential mechanisms of bacterial resistance	8
2	Antiparallel β-sheet of porins	
3	OprD structure	
4	Three-component efflux pump	13
5	Proposed structure of the MexAB-OprM	14
6	Demonstrating persisters	17
7	Effect of selective antibiotic pressure in bacteria	19
8	Structure of peptidoglycan	25
9	Molecular srtructure of beta lactamase	26
10	Family portrait" of β-lactamase enzymes	37
11	Molecular structure of NDM-1	57
12	DDST for detection of MBL production	60
13	Etest MBL strip	61
14	Plate of MacConkey cultured with urine sample	68
15	Nutrient agar plate showing red endopigment of	71
	Serratia spp.	
16	Template for applying antimicrobial disks	72
17	Two plates of MHA streaked for antibiotic	74
	susceptibility testing for an isolate of E. coli	
18	Two Plates of MHA streaked for antibiotic	75
	susceptibility testing for two isolates of Ps.	
	aeruginosa	
19	Two plates of MHA streaked for antibiotic	76
	susceptibility testing by disk diffusion method for	
20	two isolates of A.baumannii	7.6
20	A plate of MHA streaked for antibiotic	76
	susceptibility testing by disk diffusion method for	
21	an isolate of A.baumannii.	70
21	Imipenem MIC in microtitre plate.	78

22	Plate of MHA inoculated with Ps. aeruginosa, showing positive CDT and DDST	80
23	Plate of MHA inoculated with Ps. aeruginosa, showing positive CDT and DDST.	81
24	A plate of MHA inoculated with A.baumannii showing positive CDT and negative DDST	81
25	Plate of MHA inoculated with A.baumannii showing MBL E-test with positive result	82
26	Plate of MHA inoculated with Ps. aeruginosa showing MBL E-test with positive result	83
27	Plate of MHA inoculated with Ps. aeruginosa showing phantom zone	83
28	A plate of MHA inoculated with imipenem sensitive A.baumannii isolate, showing negative CDT and DDST	84
29	MHA plate inoculated with imipenem sensitive A.baumannii isolate showing MBL E-test (negative result)	85
30	Samples positive for Gram negative bacilli.	87
31	Frequencies of Gram negative bacilli isolates.	89
32	Imipenem susceptibility among Gram negative bacilli isolates	95
33	Imipenem susceptibility of isolated Gram negative bacilli	96
34	Imipenem resistance among different Gram negative isolates	97
35	Distribution of imipenem resistant isolates among different samples	99
36	Results of DDST, CDT and MBL E-test in imipenem resistant isolates	103
37	Results of DDST, CDT, MBL E-test among imipenem resistant Gram negative bacilli isolates	104

List of Tables

Table	Title	Page
number		
1	Evolution of functional classification of β -lactamases	28
2	Functional and molecular classifications of β -	29-30
	lactamases	
3	Organisms carrying chromosomally encoded MBLs	53
4	Techniques for detection of MBL production	62
5	Antibiotic disks used for antibiotic susceptibility	73
	testing for isolated Enterobacteriacae and their	
	zones diameter breakpoints	
6	Antibiotics used for antibiotic susceptibility	74
	testing for isolated Pseudomonas aeruginosa and	
	their zones diameter breakpoints	
7	Antibiotic used for isolated Acinetobacter spp. and	75
	their zones diameter breakpoints	
8	Imipenem MIC interpretive standard	78
9	The demographic and clinical data of the patients	86
	from whom the Gram negative bacilli were isolated	
10	Frequencies of different Gram negative bacilli	88
	isolated from different clinical samples	
11	Antibiotic susceptibility results of	90
	Enterobacteriacae	
12	Antibiotic susceptibility results of different	92
	isolated Enterobacteriacae	
13	Antibiotic susceptibility results of Ps. aeruginosa	93
14	Antibiotic susceptibility results of A. baumannii	94
15	Imipenem susceptibility of Gram negative bacilli	96
	isolates	
16	Imipenem susceptibility of different Gram negative	97
	isolates	

17	Distribution of imipenem resistant isolates among different samples	98
18	Antibiotic resistance among the 31 imipenem resistant isolates	100
19	Imipenem MIC by micro-broth dilution technique of the isolated Gram negative bacilli	102
20	Results of DDST, CDT and MBL E-test performed on the imipenem resistant isolates	103
21	Results of DDST, CDT, MBL E-test among different imipenem resistant Gram negative bacilli isolates	104
22	Results of DDST and CDT among different imipenem susceptible Gram negative bacilli isolates (15 isolates)	105

List of Abbreviations

Abbreviation	Title
A.baumannii	Acinetobacter Baumannii
AHL-SMs	Acylated homoserine lactone signaling
	molecules
API 20 NE	Analytical profile index 20 None
	Enterobacteriacae
ASU	Ain Shams University
ASUHs	Ain Shams University Hospitals
ATMO	Amino thiazolyl methoxyimino
bla	Beta lactamase
CDC	Centers for disease control and
	prevention
CDT	Combined disk test
CFU	Colony forming unit
CLSI	Clinical Laboratory and Standard Institute
COPD	Chronic obstructive pulmonary disease
DDST	Double disk synergy test
E. coli	Escherichia coli
EDTA	Ethylene-diamine-tetraacetic acid
ESAC	Extended-spectrum AmpC
ESBLs	Extended spectrum beta lactamases
FDA	Food and drug administration
GIM	German imipenemase
ICU	Intensive care unit
IMP	Imipenemase
KD	Kilo Dalton
K.pneumoniae	Klebsiella pneumoniae
KPC	Klebsiella pneumomiae carbapenemase
LRT	Lower respiratory tract

MBLs	Metallo-beta lactamases
MHA	Muller Hinton agar
MIC	Minimal inhibitory concentration
MPA	Mercaptopropionic acid
NAG	N-acetylglucosamine
NAM	N-acetylmuramic acid
NDM	New Delhi metallo beta lactamase
NMC-A	Non metallo-carbapenamase of class A
No.	Number
OMP	Outer membrane protein
OXA	Oxacillinase
PBPs	Penicillin binding proteins
PCR	Polymerase chain reaction
PPV	Positive predictive value
Ps.aeruginosa	Pseudomonas aeruginosa
S. maltophilia	Stenotrophomonas maltophilia
SD	Standard deviation
SHV	Sulfhydryl Reagent Variable
SMA	Sodium mercaptoacetic acid
SPM	Sao Paulo metallo beta lactamase
Spp.	Species
TSX	Trimethoprim/ sulfamethoxazole
VIM	Veronese imipenemase

Introduction

The introduction of carbapenems into clinical practice represented a great advance for the treatment of serious bacterial infections caused by β-lactam-resistant bacteria. Due to their broad spectrum of activity and stability to hydrolysis by most β-lactamases including the extended spectrum β -lactamases (ESBLs) and AmpC, the carbapenems have been the drugs of choice for treatment of infections caused by penicillin- or cephalosporin-resistant Gram-negative bacteria (*Zhanel et al.*,2007). However there has been an increase in the prevalence of carbapenem resistance reported mainly for *Pseudomonas aeruginosa* (*Ps.aeruginosa*) and *Acinetobacter spp.* in several countries (*Gladstone et al.*, 2005)

Carbapenem resistance is through lack of drug penetration (i.e., porin mutations and efflux pumps) and/or carbapenem-hydrolyzing β -lactamases. Based on molecular studies, two classes of carbapenem-hydrolyzing enzymes have been described: serine enzymes, possessing a serine moiety at the active site, and metallo- β -lactamases (MBLs) which require divalent cations as cofactors for enzyme activity (*Bush*, 2001; *Gladstone et al.*, 2005).

MBLs are group of zinc based β -lactamases. They are naturally occurring in several Gram positive and Gram negative organisms. The genes responsible for MBL production may be chromosomally or plasmid-mediated and hence pose a threat of spread of resistance by gene transfer among the Gram-negative bacteria (*Gladstone et al.*, 2005).

The MBLs encoded on transferable genes include IMP, VIM, SPM, and GIM. Most, if not all, genes encoding IMP, VIM, SPM as well as GIM are found as gene cassettes in class 1 integrons carried by transferable large plasmids (*Castanheira et al.*,2004) although IMP-1 allele, *bla*_{IMP-1} was also found on class 3 integrons (*Collis et al.*,2002).

Acquired MBLs is one of the most worrisome resistance mechanisms because they can hydrolyze with the exception of aztreonam, all β -lactams including carbapenems. In addition, their genes are carried on highly mobile elements, allowing easy dissemination. They are also not susceptible to therapeutic serine β - lacatamase inhibitors (such as clavulanate and sulfones) and there's no therapeutic inhibitor for them *(Walsh et al., 2005)*.

MBLs genes have spread from *Ps. aeruginosa* to members of *Enterobacteriaceae* (*Peleg et al.,2005*) and MBLs producing isolates were associated with higher morbidity &mortality (*Walsh et al., 2005*).

With the global increase in the occurrence and types of MBLs, early and accurate detection is crucial for implementation of strict infection control practices and treatment with alternative antimicrobials (*Nordmann and Poirel*, 2002).

Despite polymerase chain reaction (PCR) being highly accurate and reliable in detection of MBLs, its accessibility is often limited to reference laboratories and it's of limited practical use for daily application in clinical laboratories because of the cost (*Franklin et al., 2006*). Thus, the development of a simple and inexpensive testing method for detecting MBLs production is necessary.

Several non molecular techniques have been studied, all taking advantage of the enzyme's zinc dependence by using chelating agents, such as EDTA or 2- mercaptopropionic acid (MPA), to inhibit its activity (*Franklin et al.*, 2006).

E-test (MBL E-test) gradient formats were developed for detection of MBLs based on the reduction of imipenem or ceftazidime minimal inhibitory concentrations (MICs) in the presence of EDTA or 2-MPA. The Etest MBL results were in 100% agreement with the results from the genotypic and biochemical methods (*Timothy et al.*, 2002).

Aim of the work

Evaluation of imipenem- EDTA combined disk test and imipenem -EDTA double disk synergy test (in comparison to metallo- β -lactamase E-test) as simple reliable inexpensive methods for phenotypic detection of metallo- β -lactamases production by Gram negative bacilli isolated from different clinical specimens.

Antibiotic Resistance in Gram Negative Bacilli

The emergence of antibiotic-resistant Gram negative pathogens including *Acinetobacter spp., Pseudomonas aeruginosa (Ps. aeruginosa)*, and *Enterobacteriaceae* is a major public health concern, particularly in hospitals and other health care settings *(Bhavnani et al., 2006)*. This is because:

- 1- Antibiotic-resistant organisms appear to be biologically fit and are capable of causing serious, life-threatening infections.
- 2- The presence of multi-resistant strains of these organisms has been associated with prolonged hospital stay, higher health care costs, and increased mortality, particularly when initial antibiotic therapy does not provide coverage of the causative pathogen.
- 3- Antibiotic-resistant organisms are difficult to manage, because treatment options are limited.
- 4- The increase in the prevalence of drug-resistant pathogens is occurring at a time when the discovery of new antibiotic agents is slowing down dramatically.

Consequently, there is concern that in the not-too-distant future, we may be faced with a growing number of potentially untreatable infections (*Slama*, 2008).