

Ain Shams University Faculty of Engineering Computers and Systems Department

Graph Based Techniques Applied in Electrical Circuit Simulation

A Thesis

Submitted in partial fulfillment for the requirements of Doctorate of Philosophy of Science degree in Electrical Engineering

Submitted by:

Hazem Said Ahmed Mohammed
M.Sc. of Electrical Engineering

(Computers and Systems Department)
Ain Shams University, 2006.

Supervised by:

Prof. Dr. Hussein Ismail Shahein

Prof. Dr. Hazem Mahmoud Abbas

Cairo 2014

Acknowledgements

All praise is due to Allah, Most Merciful, the Lord of the Worlds, Who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

I wish to express my gratitude to my supervisors, Professor Hussein Shahein and Professor Hazem Abbas for their exceptional guidance, encouragement, insightful thoughts and useful discussions. It was my great pleasure to work with Professor Hussein Shahein and Professor Hazem Abbas.

I would also like to extend my sincere appreciation to Dr. Bassem Amin and Dr. Watheq ElKharashi for their advice and support during my research.

I am in no way capable of appropriately thanking my parents and my wife for their unconditional love and unlimited support.

Hazem Said Ahmed
Computer and Systems Department
Faculty of Engineering
Ain Shams University
Cairo, Egypt
2013

Abstract

In this dissertation, the acceleration of electrical circuit simulation problem is addressed. As SPICE simulator core engine is the base of most current electrical circuit simulator, this engine is studied for detecting performance bottlenecks. Due its time complexity, solving sparse matrix step in SPICE engine is targeted in this dissertation to enhance the performance of the simulator.

A novel technique based on graph theory is introduced to solve sparse linear systems. The proposed technique enhances the ability to build sparse parallel solvers for circuit simulation matrices. Thus the proposed technique accelerated the performance of circuit simulation algorithms. The new technique represents sparse linear system as a signal flow graph (SFG). Then it divides the graph into separate strongly connected components (SCCs). SCCs relations are detected and represented in reduced graphs which are used to enhance the parallelism of the solver. To benefit from the parallel nature of the reduced graph representation, Graphics Processing Unit (GPU) is used to accelerate sparse Lower Upper (LU) factorization.

The main contribution in this dissertation is the parallelization of KLU ("Clark Kent" LU) algorithm through introducing the concept of the reduced graph. A theory that states that Reduced Graph are Non-Cyclic and hence can be processed in parallel is introduced and proved. The GPU is used to implement proposed parallel KLU. To validate the performance of the proposed technique, it is tested against real circuit matrices from the University of Florida sparse matrix collection. The proposed technique outperformed sequential KLU in most of the test cases.

Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering (Computers and Systems Engineering).

The work included in this thesis was carried out by the author at the Computers and Systems Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Hazem Said Ahmed Mohamed
Computers and Systems Engineering Department
Faculty of Engineering
Ain Shams University
Cairo, Egypt
2014

Contents

Lı	st of	tables	111
Li	st of	figures	ix
Li	st of	Abbreviations	iii
1	Intr	oduction	1
	1.1	Problem Statement	2
	1.2	Motivation	3
	1.3	Dissertation Organization	3
2	Bac	kground	5
	2.1	SPICE simulator	5
		2.1.1 History of SPICE	5
		2.1.2 SPICE Algorithm	6
		2.1.2.1 Circuit Example	8
	2.2	Sparse Linear Solvers	17
		2.2.1 Dense LU	18
		2.2.1.1 Gaussian Elimination	18

	2.2.1.2 LU Factorization	19
2.2.2	Sparse LU	21
	2.2.2.1 Sparse Matrix Representation	21
	2.2.2.2 Sparse Triangular Solution	22
	2.2.2.3 Gilbert/Peierls' Algorithm	26
	2.2.2.3.1 Left Looking LU factorization	26
	2.2.2.3.2 Calculating vector u_{12} :	26
	2.2.2.3.3 Calculating element u_{22} :	27
	2.2.2.3.4 Calculating vector l_{32} :	27
	2.2.2.4 Gilbert/Peierls' Algorithm steps:	28
2.2.3	Fill-in	29
2.2.4	Ordering	31
	2.2.4.1 Ordering effect on performance	31
	2.2.4.2 Ordering methods	35
2.2.5	Factorization Methods	35
	2.2.5.1 SuperLU	36
	2.2.5.1.1 Super-nodes	36
	2.2.5.2 KLU	38
	2.2.5.2.1 Diagonal Free Matrix	39
	2.2.5.2.2 BTF	40
	2.2.5.2.3 Ordering	40
	2.2.5.2.4 Block Factorization	40
	2.2.5.2.5 Block Back Substitution	41
	2.2.5.3 Accelerating KLU	42
Onenh Da	aged Devellel Charge Colver	49
-	ased Parallel Sparse Solver	43
3.1 KLU	steps	44

	3.2	Propo	sed Technique	17
		3.2.1	Zero Free Diagonal	1 9
		3.2.2	Block Triangular Matrix 5	60
		3.2.3	Ordering Diagonal Blocks 5	53
		3.2.4	Factorizing Diagonal Blocks 5	54
		3.2.5	Solving the System	54
		3.2.6	Reduced Graph	54
	3.3	Reduc	eed Graph Processing Steps	6
		3.3.1	Node Processing	6
		3.3.2	Link Processing	7
	3.4	Advar	ntages of Proposed Technique	7
		3.4.1	Inherited Parallelism	7
		3.4.2	Memory Access	8
	3.5	Next S	Steps	8
4	Imp	olemen	tation on GPU 5	9
	4.1	GPU	architecture	59
		4.1.1	Streaming Multiprocessor 6	61
		4.1.2	Compute Unified Device Architecture CUDA 6	61
		4.1.3	CUDA Parallelism 6	3
	4.2	GPU	Based KLU technique 6	5
		4.2.1	Input Matrix	66
		4.2.2	Reduced Graph Representation 6	59
		4.2.3	Nodes Processing Steps	70
			4.2.3.1 Triangular Solution	71
			4.2.3.2 Basic floating point step of Node Processing 7	72
		4.2.4	Link Processing Steps	73

			4.2.4.1	E	Ba	as:	sic	: H	oa	tir	ng	pc	in	t :	$\mathrm{st}\epsilon$	ep	of	Li	nk	: F)r(oce	S	sir	ng		74
		4.2.5	Planning	g I	In	id	eŗ	pe	nd	len	t I	r	осе	ess	sin	g	St	eps	S .								74
		4.2.6	SIMT co	om	np)a	ιti	bi	lit	у.						•											76
5	Exp	Experimental Results														79											
	5.1	Univers	sity of Fl	lor	ric	da	a :	Sp	ar	se	Μ	at	rix	(Co	lle	cti	on									79
	5.2	Test Pl	atform																								80
	5.3	Algorit	hm Perfo	orr	m	ıaı	no	ce																			80
	5.4	Results	Analysi	is .																							83
		5.4.1	Parallel	G	ЗP	'U	J	ΚI	LU	V	s I	ΚL	U														83
		5.4.2	Parallel	G	ЗP	'U	J	ΚI	LU	V	s S	Տալ	pei	rL	U	ar	ıd	K	LU	ſ	•	•		•			84
6	Conclusions													87													
	6.1	Finding	gs																								87
	6.2	Future	Work .		•				•				•			•		•				•					88
\mathbf{R}_{0}	efere	nces																									89

List of Tables

5.1	Test Matrices Statistics	81
5.2	Algorithm Performance Comparison on test Matrices	82

List of Figures

2.1	SPICE flowchart	7
2.2	Circuit Example	8
2.3	Capacitor equivalent circuit	12
2.4	Diode model linearization	13
2.5	Diode equivalent circuit	14
2.6	Graph represeting relations between variable	24
2.7	Non-zero pattern of lower triangular system solution	25
2.8	Gilbert/Peierls' Algorithm matrix processing	29
2.9	Types of super-nodes	36
3.1	KLU steps	46
3.2	Graph representing the equations 3.6	49
3.3	Graph representing zero free diagonal matrix	51
3.4	SCC detection	52
3.5	Reduced Graph	55
3.6	Reduced Graph 2	55
4.1	GPU Architecture (figure from [42])	60
4.2	CUDA Programming Model (figure from [42])	62
4.3	Sample Matrix $A \ldots \ldots \ldots \ldots \ldots$	66

4.4	Sample Matrix Blocks	67
4.5	Reduced Graph of Sample Matrix	70
4.6	Node A_{44} processing steps	71
4.7	Link A_{34} Proceeding	73
4.8	Reduced Graph Processing Steps	75
5.1	Performance of KLU vs Parallel GPU KLU	83
5.2	Performance of KLU, SuperLU, and Parallel GPU KLU	85

List of Abbreviations

AMD Approximate Minimum Degree

BLAS Basic Linear Algebra Subprograms

BTF Block Triangular Form

COLAMD Column Approximate Minimum Degree CUDA Compute Unified Device Architecture

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

IC Integrated Circuit

KCL Kirchhoff's Current Law KLU Clark Kent Lower Upper

LU Lower Upper

MNA Modified Nodal Analysis

SCC Strongly Connected Component

SFG Signal Flow Graph

SIMD Single Input Multiple Data SIMT Single Input Multiple Threads

SM Streaming Multiprocessors

SoC System on Chip

SP Streaming Processor

SPICE Simulation Program with Integrated Circuit Emphasis