

كلية التربية النوعية قسم الإقتصاد المنزلي

تأثير إضافة بعض النباتات العطرية علي الثبات الأكسيدي لزيوت القلي والأعضاء الداخلية لفئران التجارب

رسالة دكتوراه

مقدمة من الباحث

أحمد ذكي أمين حسونه

باحث مساعد بالمركز الإقليمي للأغذية والأعلاف مركز البحوث الزراعية - وزارة الزراعة

إستكمالا للحصول علي درجة الدكتوراه في الاقتصاد المنزلي

تخصص تغذية وعلوم أطعمة

تحت إشراف

أ.د/ إبراهيم محمد حسن

أستاذ علوم وتكنولوجيا الأغذية بقسم علوم الأغذية كلية الزراعة حجامعة عين شمس.

أ.د/عقيلة صالح حمزة

رئيس بحوث – المركز الإقليمي للأغذية والأعلاف -مركز البحوث الزراعية -الجيزة

أ.د/إقبال محمود محمد

أستاذ التغذية وعلوم الأطعمة بقسم الإقتصاد المنزلي – كلية التربية النوعية -جامعة عين شمس.

أ.د/عادل محمد بكير

أستاذ الباثولوجي – كلية الطب البيطري جامعة القاهرة

د/ جيهان إبراهيم عبد الوهاب

مدرس التغذية و علوم الأطعمة بقسم الاقتصاد المنزلي كلية التربية النوعية المسامعة عين شمس

Ain-Shams University Faculty of Specific Education Home Economic Department

EFFECT OF ADD SOME AROMATIC PLANTS ON THE STABILITY OF THE OXIDE FRYING OILS AND INTERNAL ORGANS OF RATS

By

AHMED ZAKI AMIN HASSONA

Researcher Assistant of Regional Center for Food and Feed Agricultural Research Center, Giza, Egypt

Thesis

Submitted for Partial Fulfillment of the requirements of Ph.D. Degree in Home Economic (Nutrition and Food Sciences)

Supervisors

Prof. Dr. EKBAL MAHMOUD MOHAMED

Professor of Food Sciences Department, Faculty of Specific Education,
Ain Shams University

Prof. Dr. ADEL MOHAMED BAKEER

Professor of Pathology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. IBRAHIM MOHAMED HASSAN

Professor of Food Science and Technology, Faculty of Agriculture Ain Shams University

Prof. Dr. AKILA SALEH HAMZA

Head Research Regional Center for Food and Feed, Agric. Res. Center, Giza, Egypt.

DR. GEHAN IBRAHIM ABD EL-WAHAB

Lecturer of Nutrition and Food Sciences Faculty of Specific Education, Ain Shams University

Content

Title	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Effect of deep- frying on the quality of frying oils	4
2.2. Effect of deep - fat frying process on the produced fried food	10
2.3. Palm oil	12
2.4. Specifications for frying oil	13
2.5. Effect of Heating on Oil Stability	15
Water loss and oil Absorption in frying foods	20
Types of frying oils	23
Changes of oil chemical characteristics during deep-fat frying	24
Peroxide Value (PV)	26
P-AnsidineVlaue (P-AV)	28
Peroxide and ansidine values (TOTOX value)	30
Thiobarbituric acid (TBA)	34
Iodine value (IV)	36
Fatty acid composition	42
Changes of oil physical characteristics during deep-fat frying	
process	46
Viscosity	46
2.3.6. Oil color during frying	49
Absorbance at 232 and 268 nm	51
The role of Antioxidants	53
3. MATERIALS AND METHODS	68
Materials	68
3.1. Essential oils	68
3.2. Potato	68
	1

Title	Page
3.3. Palm Olien Oils	68
3.4. Prepration of herbs extract	68
Treatments	68
Preparation of palm olein to frying process	69
3.5 Preapattion of potato chips	69
Frying protocol	69
3.3.1 Description of frying experiments	70
3.4. Methods of Analysis	71
3.5. Sensory evaluation	71
Animals	71
3.6. Histopathological alterations	75
3.7. Statistical analysis	75
4. RESULTS AND DISCUSSION	76
4.1. Peroxide value (P.V.)	76
4.2. Ansidine value	80
4.3. Totox value (Total oxidation)	82
4.4. Iodine number	84
4.5. Thiolbarbituric acid (TBA) value	85
4.6. Acid value	87
4.7. Viscosity	89
4.8. Polar value	90
4.9. Fatty acid composition	92
4.9.1: Fatty acids profile of frying samples	93
4.9.2. Untreated (control) sample	93
4.9.3. Basil sample	95
4.10. Organolyptic evaluation	101
4.11. Histopathological changes	104

Title	Page
4.11.1 A. Rats fed only on palm oil only	104
4.11.2. B. Rats fed only on palm oil only and antioxidants	110
4.11.2.1.Natural Antioxidants	110
4.11.2.2. Artificial antioxidants	114
4.11.2.2.1. Kidney:	115
Artificial antioxidants	118
4.11.2.2.2. Heart	119
Artificial antioxidants	122
5. DISCUSSION	123
SUMMARY	128
REFERENCES	140
ARABIC SUMMARY	1-9

List of Table

Table No	Title	Page
(1)	Suggested treatments for using various antioxidants (natural and /or chemical) in frying oil	69
(2)	Example of a commonly Used Purified Diet (AIN-76A) for Rats.	72
(3)	Mineral Premix	73
(4)	Vitamin premix	74
(5)	Scheme of treatments for using various antioxidants (natural and /or synthetic) in biological experiment.	75
(6)	Peroxide value of different frying oil sample treatment with different antoxidants.	78
(7)	Efficiency of different antioxidants added to palm olein	79
(8)	Ansidine value of different frying oil sample treatment with different antoxidants	81
(9)	Totox value of different frying oil sample treatment with different antoxidants	83
(10)	Iodine number of different frying oil sample treatment with different antoxidants	84
(11)	TBA value of different frying oil sample treatment with different antoxidants	86
(12)	Acid value % of different frying oil sample treatment with different antoxidants	87
(13)	Viscosity value of different frying oil sample treatment with Control different antoxidants	89
(14)	Polar value of different frying oil sample treatment with Control different antoxidants	91
(15)	Fatty acid profile (%) of different control frying oil samples	94
(16)	Fatty acid profile (%) of Basil different basil frying oil samples	96
(17)	Fatty acid profile (%) of different rosemary frying oil samples	98
(18)	Fatty acid profile (%) of different sage frying oil samples	99
(19)	Fatty acid profile (%) of different control frying oil samples	100
(20)	Organoleptic evaluation of oil according to use artificial and natural antioxidant with different	102

Table No	Title	Page
	frying period	
(21)	Organoleptic evaluation of crispy potatoes according to use artificial and natural antioxidants	
	with different frying period	103

List of Figure

Fig. No	Title	Page
(1)	Peroxide value of different frying oil sample treatment with different antoxidants	79
(2)	Ansidine value of different frying oil sample treatment with different antoxidants	81
(3)	Totox value of different frying oil sample treatment with different antoxidants	83
(4)	Iodine number of different frying oil sample treatment with different antoxidants	85
(5)	TBA value of different frying oil sample treatment with different antoxidants	86
(6)	Acid value % of different frying oil sample treatment with different antoxidants	88
(7)	Viscosity value of different frying oil sample treatment with Control different antoxidants	90
(8)	Polar value of different frying oil sample treatment with Control different antoxidants	91
(9)	Organoleptic evaluation of oil according to use artificial and natural antioxidant with different frying period	102
(10)	Organoleptic evaluation of crispy potatoes according to use artificial and natural antioxidants with different frying period	103
(11)	Liver of rats fed on diet containing palm oil only used in zero time showing slight congestion of central vein (star).H.&E.X16	104
(12)	Liver of rats fed on diet containing palm oil only used in 10 times showing and periductal mononuclear cellular infiltration(arrow). H.&16	105
(13)	Liver of rats fed on diet containing palm oil only used in 30 times showing hepatocellular necrosis (star) and more pronounced periductal mononuclear cellular infiltration (arrow). H.&E.X40	105
(14)	Liver of rats fed on diet containing palm oil only used in 50 times showing pronounced periductal mononuclear cellular infiltration (arrow) around the bile duct (BD) and fibrosis. H & E X 64	106
(15)	bile duct (BD)and fibrosis. H.&E.X64 Kidney of rats fed on diet containing palm oil only used in zero time showing Obliteration of tubular	107

Fig. No	Title	Page
	lumen (B) and slight hyperemia of capillary tufts	
	with periductalhaemonhage (arrow). H.&E.X80	
(16)	kidney of rats fed on diet containing palm oil only	
	used in 10 times showing necrosis in the lemming	
	epithelial cells of both proximal (P) and distal	105
	convoluted tubules (D).H.&E.X80	107
(17)	Kidney of rats fed on diet containing palm oil only	
	used in 30 times showing, interstitial hemorrhage	
	(H) and slight fecal interstitial lymphocytic	100
	infiltration (arrow) .H.&E.X40	108
(18)	Kidney of rats fed on diet containing palm oil only	
	used in 50 times showing severe tubular hylaine	
	casts (star) and severe interstitial lymphocytic	100
	infiltration(arrow).H.&E.X40	108
(19)	Heart of rats fed on diet containing palm oil only	
	used in 30 times showing focal fatty infiltration	
	(signet ring appearance, arrow) in the endocardium	100
(2.0)	(END). H&E.X80	109
(20)	Heart of rats fed on diet containing palm oil only	
	used in 50 times showing focal fatty Infiltration in	
	the endocardium (star), and focal myocardial	110
(21)	inflammatory cells infiltration (arrow). H&E.X40	110
(21)	livers of rats fed on diet containing palm oil and	
	rosemry only used in 10 times Showing mild with	111
(22)	slight dilated central vein(cv). H&E.X40	111
(22)	livers of rats fed on diet containing palm oil and	
	rosemry only used in 30 times Showing vacuolation	
	vacuolar degeneration of hepatocytes (arrow).	112
(22)	H&E.X64	114
(23)	livers of rats fed on diet containing palm oil and	
	rosemry only used in 50 times Showing less	
	pronounced periductal fibrosis with vacuolar	112
(24)	degeneration in hepatocytes (arrows). H&E.X64	112
(24)	livers of rats fed on diet containing palm oil and	
	sage at zero, 10,30 and 50 times showed only	113
(25)	slight vacuolation of hepatocytes. H&E.X40	
(25)	livers of rats fed on diet containing palm oil and basil at zero,10,30 and 50 times showed only	
	vacuolation of hepatocytes (arrow). H&E.X40	113
(26)	livers of rats fed on diet containing palm oil and	
(20)	BHTat zero,10,30 and 50 times showed pyknotic	114
	Diriat Zero, 10,30 and 30 times showed pyknotic	- •

Fig. No	Title	Page
	nuclei of hepatocytes (arrow). The portal vein is still engorged with bloodH&E.X40	
(27)	livers of rats fed on diet containing palm oil and	
	BHTat zero, 10,30 and 50 times showed diffuse	114
(28)	fatty change(star).H&E.X16 higher magnification of Fig. 17.H&E.X40	115
		113
(29)	kidneys of rats fed on diet containing palm oil and rosemry only used in zero and 10times general	
	appearance of glomeruli(g) and tubules (t) normal	
	histological structure of the glomeruli & tubules (t) .H.&E X16	116
(30)	kidneys of rats fed on diet containing palm oil and	
	rosemry only used in 30 times showed	
	vacuolization in lining endothelium of glomerular tubules (9). H.&E X40	116
(31)	kidneys of rats fed on diet containing palm oil and	
	rosemry only used in 50 times showed healthy	
	glomeruli (g) and tubules (arrow) congestion of the glomerular tubules (9) H&E. X4.	117
(32)	kidneys of rats fed on diet containing palm oil and	
(32)	sage showed re-establishment of the normal tissues,	
	except H&E. X64	117
(33)	kidneys of rats fed on diet containing palm oil and	
	basil showed re-establishment of the normal tissues,	
	except the congestion of blood vessels (V) H&E.	118
(34)	X40 kidneys of rots fed on diet containing nelm oil, and	110
(34)	kidneys of rats fed on diet containing palm oil and BHTat zero,10,30 and 50 times Showed	
	hemorrahge of the interstitial connective tissue	
	(star) H.&E. X16	118
(35)	hearts of rats fed on diet containing palm oil and	
	rosemary only used in zero and 10 times showed	
	more or less the normal appearance of myocardium.	110
(2.5)	H&E.X40	119
(36)	hearts of rats fed on diet containing palm oil and	
	rosemary only used in 30 times showed the normal appearance of myocardium and hemorrhage(arrow)	
	in between. H&E.X40	120
(37)	hearts of rats fed on diet containing palm oil and	
	rosemary used in 50 times showed marked	
	improvement of the myocardium except slight focal	120

Fig. No	Title	Page
	lymphocytic accumulation (arrow). H.&E. x40.	
(38)	Hearts of rats fed on diet containing palm oil and	
	sage showed more or less the normal appearance of myocardium. H&E.X64	121
(39)	Hearts of rats fed on diet containing palm oil and	
	sage showed the normal appearance of myocardium. H&E.X10	121
(40)	Hearts of rats fed on diet containing palm oil and	
	BHT showed severe hemorrhage (h) between the	
	myocardial muscles and slight hylainzation(arrow).	
	H.&E.X40	122

1. INTRODUCTION

Deep-fat frying is one of the most commonly used practices in food preparation and manufacture all over the world. The increased consumption of fired foods is due to an increased number of restaurants serving convenience foods such as fried chicken, French fries and potato chips. More than 500 million pounds of edible fats and oils, for example, are used annually for the manufacture of potato chips in the United States alone (Irwandi & Che Man 1999).

Deep fat frying is a popular way to prepare a variety of foods. When food is fried in heated oil, many complex chemical reactions occur and the oil begins to degrade. The triglyceride molecule breaks down into both volatile and nonvolatile compounds which are soluble in the oil. These components contribute to both the desirable and undesirable sensory characteristics of food fried in oil. Natural triglycerides comprising an oil are considered non polar material. The products of the oil degradation are defined as polar compounds (Hassan, 2001).

The scientific literature is replete with studies questioning the safety of heated fats and oils. It is will established that heating of fats can results in formation of compounds with antinutritional properties. Compounds formed may be enzyme inhibitors, vitamin destroyers, lipid oxidation products, gastrointestinal irritants and/or potential mutagens (Hassan, 2001).

When workers have limited their experimentation to frying fats which actually had been used for frying foods such as potato chips, French fries and fish as well as other local fried products (falafel, pepper and eggplant), the results have been different from those found for laboratory-heated fats and oils (Hassan, 2001).

Controlling frying oils and fats all over the world are still. unsatisfactory. Most legistations and regulations in many countries only ensure that fats and oils used in food service establiaments are obtained from unapproved source and are not adultrated.

Deep-fat frying may be defined as the process of cooking foods by immersing them in an edible oil or fat maintained at a temperature of about 150-200°C (Yamsaengsung & Moreira 2002).

A number of reactions occur in the frying oil when foods are fried causing oxidative and hydraulytic degradation as well as polymerization of the oil. The question is whether these oxidized and polymerized materials in frying oil might cause adverse effects when consumed by human beings. The extent of these reactions depends on the frying conditions, principally temperature, duration, moisture content in the fired product, kind of food being fried and aeration involved (Komoda et al., 2005).

Several European countries have specific regulations for frying fats and oils, as well as procedures and guidelines are particularly important for the most EEC.

Aim of Study

The present study was carried out to achieve the following objectives:

- 1- Studying the time-temperature relationships during frying operations using designed frying protocol.
- 2- Investigating the effect of frying process on the quality parameters of frying oilused.
- 3- investigating the effect of feeding rats on a balanced diet containing 10% of different oils (exposed to a certain number of fryings) on histological alterations occur in liver, kidney and heart organs.
- 4- Designing mathematical models to better estimation of frying oil quality.

2. REVIEW OF LITERATURE

2.1. Effect of deep- frying on the quality of frying oils:

In some countries, such as China and USA, oils and fats manufacturers normally treat the refined oils with antioxidants to retard the undesirable changes during storage and frying operations and, in eventuality, to prolong the shell-life of the fried products. It is believed that antioxidants protect the fat from oxidation during the time that the oil is exposed to high temperature (Augustin & Berry 1983a). To avoid or delay the lipid oxidation in food processing, antioxidants have been used for over 50 years (Cuvclier et al., 1994). They play an important role in the manufacturing, packaging and storage of fats and fatty foods and have been proven to retard oxidation (Lin et al., 1981).

Deep-fat frying is one of the most common methods used worldwide for foodpreparation and production. It is extensively used both at home and on a commercial scale to enhance the organoleptic characteristics of food. In commercial deep-fat frying operations, fat is exposed continuously to heat, air and light for hours per day at temperature around 180 °C and it may be used to cook some varieties of food (**Gwo** et al., 1985).

Deep-fat frying is a process of cooking and during frying in hot oil with simultaneous heat and mass transfer many changes have occurred in frying oil. A number of chemical changes occur