Isolation and Identification of the medically important bacteria associated with hospital insects

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

By

Hanan Sayed Mohamed Amer

B.Sc. Entomology, 2005

Department of Entomology Faculty of science Ain Shams University Cairo- Egypt

Thesis Examination Committee

Name	Title	Signature

Supervisors:

Prof. Nadia Mohamed Lotfy

Professor of Entomology, Entomology Department, Facualty of Science, Ain Shams University.

Prof. Nagwa Abdel-Ghani KhamisIPC Unit Director, Ain Shams University
Specialized Hospital (ASUSH).

Prof. Yousrya Mohamed Ahmed Abdel-Hamid

Consultant (Medical Entomology), Research Institute of Medical Entomology, Ministry of Health.

BIOGRAPHY

Name: Hanan Sayed Mohammed Amer

Date of birth: 1-5-1983

Degree awarded: B.Sc. Entomology & Chemistry, 2005, Faculty of Science, Ain Shams University, Egypt.

Occupation: Infection Control Specialist, IPC unit, Ain Shams Specialized Hospital

Date of registration for M. Sc. Degree: March, 2010

Acknowledgements

I am heartily thankful to my professors and supervisors Prof. Nadia Lotfy, Prof. Nagwa Khamis and Prof. Yousrya Abdel-Hamid for the helps and advices they gave to me whenever I need it and which I couldn't ever step a step without it. Besides they serves as a role model of a typical Egyptian professors who cares and loves their students as if they were their own kids. Thank you.

Also I am extremely grateful to Ass.Prof. Rabab F. Sawaby, Department of Entomology, Faculty of Science, Ain Shams University for her help in insect identification.

And I extend my sincere thanks and gratitude to Prof. Mohamed A. Kenawy, Department of Entomology, Ain Shams University for his help, continuous teaching and his patience with me and a lots of good ideas which I could lost without it and I couldn't ever reply whatever I did to him, I'm forever grateful, Thank you.

Thanks are extended to Mr. Tarek Eid from Research Institute of Medical Entomology, Ministry of health for his cooperation in insects collection.

I want to give all thanks and gratitude to my father, mother, brother and husband for their continuous support at all levels and for my best friend for her support and assistance.

Finally, I give my thanks and appreciation for all my professors, colleagues in Ain Shams University Specialized Hospital (ASUSH) and in entomology department, faculty of science, Ain shams university and friends who gave me an advices and encourage me.

ABSTRACT

Insects were surveyed in two hospitals (ASUSH, urban) and (BUH, rural) with different hygienic levels and their adjacent residential areas (ASUSHC and BUHC for the two hospitals, respectively) to isolate and identify bacteria associated with such insects. A total of 5257 adults were collected of which Dipterous flies were the abundant (72 % insect) and Musca domestica was the most abundant species (67 % insect) which was present in all areas where it was more common / predominant species (22 %-91% insect), also M. domestica had the maximum bacterial carriage (10 spp., 63%). Moreover, higher densities of *M. domestica* were in BUH and BUHC than in ASUSH or ASUSHC. The heavily infested area was ASUSHC (55% species) followed by ASUSH, BUHC and BUH however, the total number of the collected insects was higher in BUH than in ASUSH. In all areas, M. domestica was more common during summer/ autumn and spring than in the winter. Periplaneta americana collected only during autumn in ASUSHC and was more common in autumn in BUHC while Blatella germanica collected only during summer in ASUSHC and was more common in autumn in BUH. Seventeen bacteria spp. were isolated and identified from the external surface and internal organs of the collected insects of which, Acinetobacter and Klebsiella were the most common (5 insect spp., 31% each) followed by Anthracoid, Enterobacter, E.coli, MRS-ve, Bacillus, Stenotrophomonas, MRSA, Pseudomonas, Citrobacter, Raoultella, Salmonella, Enterococci, Staph. Coag -ve, Non haemolytic strept and Diphtheroid. The present study emphasis the importance of insects mainly housefly and cockroaches as potential vectors of pathogenic bacteria in hospital environments specially rural ones. So that fly and cockroach control strategies as well as hygiene promotion programs should be applied to avoid or eliminate the health risks to the people in residential areas and transmission of nosocomial infections to patients and workers in the hospitals.

CONTENT

	Page
Abbreviations	Ι
List of Tables	IV
List of Figures	V
Abstract	VI
I.Introduction	1
II.Literature Review	4
A.Collection of insects from hospitals	4
B.Isolation of bacteria associated with insects	12
C.Identification of pathogenic bacteria associated with	19
insects and it's medical importance	
III.Materials and Methods	41
A.The study areas	41
B.Entomological Techniques	45
C.Bacteriological Techniques	50
D.Investigations	52
E.Statistical Analysis	54
IV.Results	55
Entomological studies	55
A.Species composition and relative abundance	55
B.Distribution of insects species in the study areas	65
C.Comparison of insects densities in the four areas	67
D.Seasonal abundance	75
Bacteriological studies	90
A.Isolated bacteria and identified bacteria species	90
B.Relative abundance of the identified bacteria	91
C.Distribution of bacteria species among the different	94
Insects species	
D.Insect carriage rates	99
V.Discussion	106
VI.Conclusion & Recommendation	126
VII.Summary	128
VIII.References	131
Arabic Summary	

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
ASUSH	Ain Shams University Specialized Hospital
ASUAHC	Ain Shams University Specialized Hospital Control
A.	Anacridium melanorhodon
melanorhodon	
BUH	Banha University Hospital
BUHC	Banha University Hospital Control
B.germanica	Blattella germanica
ВНІ	Brain and Heart Infusion
Cfu	Colony Forming Unit
cm	Centimeter
C.freundii	Citrobacter freundii
C. megacephala	Chrysomia megacephala
C . bicolor	Cataglephis bicolor
DMS	Data Management System
D. bicolor	Dorisiana bicolor
D. apache	Diceroprocta apache
D. pteronyssinus	Dermatophagoides pteronyssinus
ES	External surface
Etc	Et cetera
E. amseli	Emmelina amseli
E. arbustorum	Eristalis arbustorum
E. coli	Escherichia coli

E. decipiens	Empoasca decipiens
Fig.	Figure
HDM	House Dust Mite
HSD	Honestly Significant Difference
10	Internal organ
ICU	Intensive Care Unit
Km	Kilometer
K.pneumoniae	Klebsiella pneumoniae
MAR	Multiple Antibiotic Resistance
MDR	Multi Drug Resistant
MIC	Minimum Inhibitory Concentration
Min.	Minuet
MI	Milliliter
MRS –v	Methicillin Resistant Staph. Coagulase negative
MRSA	Methicillin Resistant Staph. aureus
MRVP	Methyl Red Voges Proskaeur
M. calliphya	Megalagrion calliphya
M. cleonymoides	Macroteleia cleonymoides
M. domestica	Musca domestica
M. stabulans	Muscina stabulans
N	Number
NBPC	Negative Break Point Combo
N. faliator	Nototrachys faliator
PAST	Paleontological Statistics version
PBPC	Positive Break Point Combo
PBS	Phosphate – Buffered Saline

PI	Post Ingestion
P. aeruginosa	Pseudomonas aeruginosa
P. americana	Periplaneta americana
P. mirabilis	Proteus mirabilis
P. vulgaris	Proteus vulgaris
SD	Standard Deviation
Spp.	Species
Staph. Coag -ve	Staphylococcus coagulase negative
S.aureus	Staphylococcus aureus
S. nodosa	Sarcophaga nodosa
3. Hodosa	Surcophaga noaosa
Tab.	Table Table
Tab.	Table
Tab. TSB	Table Tryptic Soy Broth

LIST OF FIGURES

Figure	Figure	Page
number		No.
Figure 1	Map of Egypt showing the location of the study areas	42
Figure 2	The Ain Shams University Specialized Hospital (ASUSH)	43
Figure 3	The Ain Shams University Specialized	44
	Hospital Control Area (Manshayet Al-	
	Sadr)	
Figure 4	Banha University Hospital (BUH)	44
Figure 5	Banha Control Area (the major vegetable market)	45
Figure 6	One of ASUSH gardens	47
Figure 7	Collection sites in BUH: A. Restaurant, B.	48
	Basement floor and C. Office in	
	ophthalmology department	
Figure 8	A Septic tank in BUHC area	49
Figure 9	Collection methods of insects: A. The hand	50
	catches of crawling insects, B. The	
	collection net for flying insects	
Figure 10	The microscan-Walkaway40	52
Figure 11a	Relative abundance of Insect orders	57
Figure11b	Relative abundance of Insect orders	58
Figure 11c	Relative abundance of Insect orders	59
Figure 11d	Relative abundance of Insect orders	60
Figure 12	Photos of Collected Hemipterous insects	61
Figure 13	Photos of Collected cockroaches	61
Figure 14	Photos of Collected dipterous flies	62
Figure 15	Photos of Collected Hymenopterous insects	63
Figure 16	Photos of Collected insects of other orders	64
Figure 17	Percentages of the collected insect species	67
	in the four areas	
Figure 18	Densities of M. domestica in the four areas	69
Figure 19	Densities of flies in the four areas	69
Figure 20	Densities of hemipterous insects in the	71
_	positive areas	
Figure 21	Densities of cockroaches in the positive	72

	areas	
Figure 22	Densities of Hymenopterous insects in the positiveareas	73
Figure 23	Densities of Megalagrion calliphya, Emmelina amseli and Anacridium melanorhodon in the positive areas	74
Figure 24	Seasonal abundance of M. domestica in the four areas	77
Figure 25	Seasonal abundance of Lucilia sericata in BUHC	80
Figure 26	Seasonal abundance of Diceroprocta apache in Ain Shams Hospital	83
Figure 27	Seasonal abundance of Colladonus setaceus	85
Figure 28	Seasonal abundance of Periplaneta Americana and Blattela germanica	86
Figure 29	Seasonal abundance of Vespa orientalis	88
Figure 30	Percentages of insects positive for bacteria isolation	94
Figure 31	Percentages of insects carrying externally isolated bacteria	101
Figure 32	Percentages of insects carrying internally isolated bacteria	103
Figure 33	Percentages of insects carrying externally and internally isolated bacteria	105

LIST OF TABLES

Number	Table	Page
		No.
Table 1	Total number and relative abundance (%) of collected insects	56
Table 2	Distribution and total collected insects in different areas of the study	66
Table 3	Mean number of dipterous flies (per net) in the four areas	68
Table 4	Mean number of hemipterous insects (per net) in the positive areas	70
Table 5	Mean number of collected cockroaches (per season) in the positive areas	72
Table 6	Mean number of Hymenopterous insects (per net per season) in the positive areas	73
Table 7	Mean number of Megalagrion calliphya, Emmelina amseli and Anacridium melanorhodon (per net) in the positive areas	74
Table 8a	Mean collection (fly per net) of Musca domestica collected in the four areas	76
Table 8b	Pairwise comparison by Tukey's HSD Test for mean collection of M. domestica in the four areas	77
Table 9	Mean collection (fly per net) of Chrysomia megacephala collected in Ain Shams and Banha Control areas	78
Table 10a	Mean collection (fly per net) of Lucilia sericata collected in Banha and Banha control areas	79
Table 10b	Pairwise comparison by Tukey's HSD Test for mean collection of Lucilia sericata in Banha Control	79
Table 11	Mean seasonal densities (fly per net) of five fly species collected In Ain Shams	81
Table 12a	Mean collection (insect per net) of Diceroprocta apache collected in Ain Shams Hospital	82
Table 12b	Pairwise comparison by Tukey's HSD Test for mean collection of Diceroprocta apache in Ain Shams Hospital	82

Table	Mean collection (insect per net) of Colladonus	84
13a	setaceus in Ain Shams and Ain Shams Control	07
	areas	
Table	Pairwise comparison by Tukey's HSD Test for	84
13b	mean collection of Colladonus setaceus in Ain	
	Shams Hospital	
Table 14	Mean collection (insect per net) of Dorisiana	85
	bicolor and Empoasca decipiens	
Table 15	Collected numbers of Periplaneta americana	86
	and Blattela germanica	
Table 16	Mean collection (insect per net) of Vespa	87
	orientalis	
	in Ain Shams and Ain Shams Control areas	
Table 17	Mean collection of Camponotus sp.,	89
	Macroteleia cleonymoides, Nototrachys	
	faliator and Cataglyphis bicolor in Ain Shams,	
	Ain Shams Control and Banha Control areas	
Table 18	Mean collection (insect per net) of	89
	Megalagrion calliphya (Odonata), Emmelina	
	amseli (Lepidoptera) and Anacridium	
	melanorhodo (Orthoptera) in Ain Shams	
	Control areas	
Table 19	Identified bacteria species	91
Table 20	Insect species (%) positive for external and	93
	internal bacteria isolation	
Table 21	Distribution of the externally and internally	98
	isolated bacteria among the insects	
Table 22	Total numbes and percentages of the	99
	externally and internally isolated bacteria	
	from different insects	
Table 23	Insects' carriage rates of external bacteria	100
Table 24	Insects' carriage rates of internal bacteria	102
Table 25	Insects' carriage rates of external and internal	104
	bacteria	
Table 26	Medical importance of the isolated bacterial	117
	species	

I. INTRODUCTION

The Synanthropic insects are ecologically associated with humans; they feed or wander over feaces, wounds and food serving as passive vectors of bacteria. Such insects include ants, flies and cockroaches. Hospitals in general provide ideal and suitable environment for survival and abundance of various medically important insects. Several workers surveyed hospitals for such insects however; they focused mainly on cockroaches and flies.

In hospitals and nearby residential areas several workers (Fotedar et al, 1991; Cotton et al, 2000; Pai et al, 2003; Warrell et al., 2003; Pai et al, 2004; Chaichanawongsaroj et al, 2004; Elgderi et al, 2006; Prado et al, 2006; Salehzadeh et al, 2007; Saitou et al, 2009; Zarchi and Vatani, 2009; Fakoorziba et al, 2010; Akinjogunla et al, 2012; Feizhaddad et al, 2012; Jalil et al, 2012; Pai, 2013; Brown and Al-Hassan 2014; Fakoorziba et al, 2014; Hagi et al, 2014; Handol Al-Fattly et al, 2014; Menasria et al, 2014; Akbari et al, 2015) collected several Blatta and Periplaneta spp, to isolate and identify microorganisms (Bacteria, fungi and parasites) of medical importance, to ascertain their vector potential in the epidemiology of nosocomial infections and to evaluate the antibiotic resistance of the bacteria isolated from these insects. Over 100 species of pathogenic bacteria have been isolated from domestic cockroaches (Cruden et al, 1987; Le Guyader et al, 1989; Oothuman et al, 1989; Bouamama et al, 2010; Tatfeg et al. 2005; Tachbele et al, 2006 Vahabi et al, 2007; Kassiri et al, 2012) including mainly different species of Salmonella, Shigella, Campylobacter, Escherichia Pseudomonas. Klebsiella. Staphylococcus, Enterobacter, Streptococcus, Serratia, Bacillus Proteus, Providencia, and Enterococcus. As for flies, Sukontason et al (2007) compared the common house fly, Musca domestica, and the Oriental latrine fly, Chrysomya megacephala, for their potential as carriers of bacteria in urban areas of Chiang Mai Province, northern Thailand. and indicated that C. megacephala was significantly more likely to carry bacterial species than M. domestica. Bouamama et al. (2007; 2010) collected P. americana and M. domestica from the residential areas of six districts in Tangier, Morocco to isolate and identify some bacteria from their body and reported that although both cockroaches and flies may be vectors of human pathogenic bacteria, the infections caused by them are easily treatable as a result of the high susceptibility of their bacteria to antibiotics routinely used in the community or in hospitals.

Other insects as ants that may have a role in disease transmission within hospitals were reported by (Santos et al, 2009; Maximo et al, 2014; Silva et al, 2014).

In Egypt, only few reports are avilable on surveying of insects in hospital and their role in disease transmission. (Shoukry and Lotfy 1991; Rady et al, 1992; Mahmoud et al, 2013; Rady et al, 2014)

The present study focuses upon the isolation and identification of pathogenic bacteria from external surfaces and internal organs of the insects which were collected from two hospitals with varying hygienic levels and their nearby residential areas.