

SYMBOLIC-BASED REPRESENTATION AND ANALYSIS OF PARAMETER VARYING SYSTEMS

By
Eng. Mohamed Saleh El Sayed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In **Electrical Power and Machines Engineering**

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
Giza, Egypt
2018

SYMBOLIC-BASED REPRESENTATION AND ANALYSIS OF PARAMETER VARYING SYSTEMS

By
Eng. Mohamed Saleh El Sayed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

In **Electrical Power and Machines Engineering**

Under the Supervision of

Prof. Dr. Hassen Taher Dorrah

Faculty of Engineering-Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY Giza, Egypt

Engineer: Mohammed Saleh El Sayed Ahmed

Date of Birth: 15 / 11 / 1969 **Nationality:** Egyptian

E-mail: m saleh 99@yahoo.com

Phone: +201000123651 Cairo, Elshroug city. Address:

Registration Date: 1 / 10 / 2014 / /2018 **Awarding Date:**

Degree: Doctor of Philosophy

Electrical Power and Machines Engineering Department:

Prof. Dr. Hassen Taher Dorrah **Supervisor:**

-Prof. Dr. Prof. Dr. Hassen Taher Dorrah **Examiners:**

> Faculty of Engineering-Cairo University -Prof. Dr. Magdy Abd El-Gany Soliman Faculty of Engineering- Cairo University

-Prof. Dr. Ahmed Mohamed El-Garhy Dean of Engineering- Helwan University (Thesis Main Advisor)

(Internal Examiner)

(External Examiner)

Title of Thesis:

SYMBOLIC-BASED REPRESENTATION AND ANALYSIS OF PARAMETER **VARYING SYSTEMS**

Key Words:

Generic control system design; Parameters varying systems; Embedded symbolic function systems; Continuous (infinite) modal system design; Symbolic computations.

Summary:

This thesis addresses the problem of exact generic symbolic formulation, derivation and solution Parameters Varying Systems (PVS) problems in control systems. Comparison between the exact generic symbolic mathematical approaches versus various techniques is investigated. The comparisons revealed that the generality and flexibility of the exact generic symbolic mathematical concept. The parameter varying systems are addressed from the physical, mathematical, and representation perspectives. The proof of concept of the new suggested concept is shown by solving different applications. For control applications, the notion of symbolic VPS control strategy realization is carried out through the incorporation of embedded configurable function units. Finally, such presented notions in this research represent a new leap towards moving back to the roots of exact generic symbolic systems.

Acknowledgment

At the beginning, thanks to *Allah* for helping me to finalize the present work.

Secondly, I would like to express my deepest gratitude to my supervisor Prof. Dr. **Hassen Taher Dorrah**, who has a great role in teaching several generations, for his outstanding patience and assistance throughout the whole work.

I wish to record my gratefulness to the staff of Electrical Power and Machines Department to whom I owe a lot of my knowledge in my practical career.

Special acknowledgements are extended to Dr. **Walaa Ibrahim Gabr** (Associate Professors, Benha Faculty of Engineering) for her significant and valuable guidance and contribution provided to this work since its initiation and during development of joint papers and thesis.

I would also like to express my gratitude to my friends who faithfully helped me throughout the whole study. In this concern, I would like to pay special thanks to my friend Ahmed El-Damarawy for his great support and valuable assistance.

Last but not least, I would like to dedicate this work to the soul of my father, from whom I have learned many valuable issues. To my mother who has never stopped her supplication for me, and to the members of my family, who have shown utmost patience and understanding during the development period of this study.

I would finally ask *Allah* that this present study contributes in the nourishment of science and serving humanity as well.

Table of Contents

Acknowledgmenti		
Table of Contentsii		
List of Tab	olesv	
List of Fig	uresvi	
List of abb	reviationsviii	
List of sym	nbolsix	
Abstract	xi	
Chapter 1	Introduction1	
Chapter 2	Overview of LPV Systems5	
2.1 Intro	oduction5	
2.2 Phy	sical Classification6	
2.2.1	Quasi-LPV systems (qLPV)6	
2.2.2	Internal time varying parameters	
2.2.3	External time varying parameters8	
2.3 Mat	hematical Classification8	
2.3.1	Discrete behavior8	
2.3.2	Continuous behavior	
2.3.3	Discontinuous behavior	
2.4 Rep	resentation of LPV Systems9	
2.4.1	Parameter dependent formulation9	
2.4.2	Polytopic formulation	
2.4.3	Linear Fractional Transformation (LFT) formulation12	
Chapter 3	Symbolic representation	
3.1 Intro	oduction15	
3.2 Solu	utions Mechanism of Mathematical Symbolic Derivation Solutions 15	
	The Manual (or by Hand) Symbolic Derivations	
3.2.2	Combined Manual and Interactive Computer Supported Symbolic	
	Derivations	
3.2.3	Fully Programmed (One-shot program) Symbolic Computation	
	Derivations	
3.3 Exa	mples of symbolic represented systems16	
3.3.1	Implementation to HIV/AIDS epidemic problem16	
3.3.2	Converting transfer function of an analog system to digital one symbolic form	
3.3.3	Symbolic representation of continuous system (inverted pendulum)	
Chapter 4	Control of Parameter Varying System Using Pole Placement Method	

4.1 Intr	oduction	25
4.2 Wo	rk motivation	26
4.3 Mo	dal systems control and operation framework	26
4.3.1	Single (one) or unimodal operation	27
4.3.2	Discrete, switching (finite) or multimodal operation	27
	Continuous (infinite) modal operation	
4.4 Der	ivation of symbolic-based control strategy	28
4.5 Syn	nbolic-based embedded configuration systems	31
4.5.1	Definition of Symbolic-based Embedded Systems	31
4.5.2	Components of symbolic-based embedded systems	31
4.5.3	Various categorizations of symbolic-based embedded systems.	32
4.5.4	Main characteristics of symbolic-based embedded systems	32
4.6 Fun	ctional programming of symbolic-based embedded systems	33
4.7 Imp	elementation and experimentation of continuous modal design to	case
stuc	ly	34
4.7.1	Derivation of continuous (infinite) modal feedback stabiliz	zation
	expressions	34
4.7.2	Simulation of symbolic-based embedded feedback expression	ns of
	the application	38
4.8 Imp	elementation and experimentation of continuous (infinite) r	nodal
con	trol and operation expressions	39
4.8.1	Scenario #1: Linear cart mass change versus time	40
4.8.2	Scenario #2: Nonlinear cart and ball masses change versus tim	ne .40
4.8.3	Scenario #3: Linear cart mass change versus time and fixed	poles
		47
Chapter 5	Modeling and Control of Unmanned Vehicles System	50
5.1 Intr	oduction	50
5.2 Pitc	h Dynamics	50
	Axial force	
5.2.2	Lift force equation	51
5.2.3	Torque equation along Z-axis	52
5.3 Cor	ntroller design	56
	Conclusions and Recommendations for Future Research	
	commendations for Future Research	
	S	
	A	
	B	
	C	
	D	
Appendix 1	E	76

Appendix F	78
Appendix G	79
Appendix H	80

List of Tables

Table 4.1: Summary of initial and intermediate experimental results
corresponding to the continuous (infinite) modal cart mass linear changing behaviour
versus time (scenario #1)41
Table 4.2 : Summary of initial and intermediate experimental results corresponding to the continuous (infinite) modal $\mathbf{M} \infty$ cart and ball masses nonlinear changing behaviour versus time (scenario #2)
Table 4.3: Summary of initial and intermediate experimental results
corresponding to the continuous (infinite) modal $M \infty$ cart mass linear changing
behaviour versus time and fixed poles (scenario #3)

List of Figures

Figure 1.1: Input-output signal flow of LPV systems
Figure 1.2: Various classifications of parameter varying systems3
Figure 2.1: Classification of systems parameters5
Figure 2.2: Phase plot of the- Van-der-Pol equation (2.1) and some trajectories solutions of the System
Figure 2.3: Computed region of attraction (in grey, centered about the origin) using the LPV approximation (2.2) of the Van-der-Pol equation (2.1)
Figure 2.4: Illustration of 1, 2 and 3 simplex
Figure 2.5: Illustration of convex hull in 2-D (plane) and 3-D (space)
Figure 2.6: Parabola is the exact parameters values dashed trapezoid is polytopic zone
Figure 2.7: Graphical representation of LFT system
Figure 3.1: Diagram for AIDS epidemic
Figure 3.2: Schematic of a furnace
Figure 3.3: A sketch showing application of the inverted pendulum mounted on motor-driven cart
Figure 4.1 Schematic of a full-state feedback system
Figure 4.2: Various classifications of modal systems control and operation schemes.
Figure 4.3: Basic structure of a function programming-based embedded system
Figure 4.4: Realization of the inverted pendulum symbolic continuous (infinite) modal M^{∞} system control and operation using embedded configured functions developed through computational mathematics.
Figure 4.5: Screen snapshot of the embedded feedback system implementation for $M = 2 Kg$ of the selected application of the inverted pendulum using microcontroller-based Functional Programming

Figure 4.6: Graphs depicting online changing of symbolic-based control gain
corresponding to the continuous (infinite) modal M^{∞} cart mass linear changing
behavior versus time (Scenario#1)
Figure 4.7 Unit step response characteristics for the four states of the inverted pendulum system represented in scenario # 1
Figure 4.8 Graphs depicting online changing of symbolic-based control gain corresponding to the continuous (infinite) modal M∞ cart and ball masses nonlinear changing behavior versus time (Scenario #2)45
changing behavior versus time (Sechario #2).
Figure 4.9 Unit step response characteristics for the four states of the inverted pendulum system represented in scenario # 2
Figure 4.10: Graphs depicting online changing of symbolic-based control gain corresponding to the continuous (infinite) modal M^{∞} cart linear changing behavior versus time considering fixed poles (Scenario #3)
Figure 4.11: Unit step response characteristics for the four states of the inverted pendulum system considering cart is vary in mass and poles of the system are fixed.49
Figure 5.1: a ₁₁ versus time53
Figure 5.2: a ₁₂ versus time
Figure 5.3: a ₁₃ versus time
Figure 5.4: a ₄₂ versus time55
Figure 5.5: a ₄₃ versus time55
Figure 5.6: a44 versus time
Figure 5.7: PID control system57
Figure 5.8: Proportional gain versus time
Figure 5.9: Derivative gain versus time
Figure 5.10: Integral gain versus time

List of abbreviations

ASICs Application-specific Integrated Circuits

CISC complex instruction set computer
ECSs Embedded Computing Systems

FP Functional Programming

FPGAs Field-programmable gate arrays
GSCM generic symbolic continuous modal

IMU Inertial measurement unitINS Inertial navigation systemLCD Liquid Crystal Display

LFT Linear fractional transformation

LPV linear parameter varying
LTI linear time-invariant
LTV linear time-varying

MIMO multiple input multiple output system

 M^{∞} infinite modal operation

PID Proportional integral derivative
RISC reduced instruction set computer
SISO single input single output system

List of symbols

	V
A_{aero}	Aerodynamic force.
а	The absolute acceleration vector.
a_{carr}	Carried acceleration.
a_{cor}	Coriolis acceleration.
a_g	Relative acceleration.
C	Ballistic coefficient.
C_D	Drag coefficient.
C_L	Lift coefficient.
F_T	Total resultant force.
F_{Refs}	Merged features matrix.
F_{Refs_SURF}	SURF features matrix.
F_{Refs_MSER}	MSER features matrix.
g	Gravity acceleration [m/s ²]
H_1	Body angular momentum vector.
h	Vehicle altitude.
I	Moment of inertia of the body.
J_2	Constant used to compute the gravitational acceleration.
Μ	Total aerodynamic moment.
m	Vehicle mass.
P_{thr}	Thrust force.
q	Dynamic pressure.
$\Delta_ ho$	a set that contains parameters values
R_e	Equatorial radius of the earth.
S	Reference area of flying body.
S	Sin
c	Cos
V_a	Vehicle velocity vector.
V_b	Vehicle velocity in body frame.
V_g	Relative velocity.
V_{w}	Wind velocity vector.
W	Angular velocity.
W_e	Earth angular velocity.
W_r	Relative angular velocity.
X	Drag force.
Y	Lift force.
Z	Side force.
λ	Geodetic longitude.

ϕ	geodetic latitude.
α	Angle of attack.
β	Side slip angle.
θ	Pitch angle.
ψ	Yaw angle.
γ	Roll angle.
ρ	Air density.
$c_{xo}, c_x^{\alpha}, c_x^{\beta}$	Coefficient of drag force, inductive resistance coefficient.
c_y^{lpha}, c_z^{eta}	Lift force coefficient and lateral force coefficient respectively
$c_{x_{oru}}$	drag coefficient of actuator
$c_{x_{oru}} \ c_{x_{ru}}^{\delta^2}$	induced drag coefficient of actuator
s_{ru}	area of actuator
q_{ru}	dynamic pressure actuator
$\delta_1,\delta_2,\delta_3,\delta_4$	deviation of actuators

Abstract

This thesis consists of a study of Parameter Varying Systems (PVS). New classifications of PVS symbolic derivations mechanisms and solution methods, as well as the operations symbolic coding are proposed. The PVS are addressed from the physical, mathematical, and representation perspectives. For expediting the productivity of the derivation of the symbolic (or algebraic) solutions, manual, interactive symbolic derivations manipulation or a combination of them are considered. In this way, fully programming (one-shot program) symbolic computation is achieved.

A new generic symbolic continuous modal (GSCM) approach for formulation and representation of different systems in different areas is proposed. In this approach, the system takes varying parameters form. The parameters are determined by sensing and feeding back of the parameters variations in a continuous manner using symbolic-based expressions in the corresponding control functions. The GSCM approach permits the simultaneous manipulation of system control and operation with the online changes of system parameters. The GSCM approach enables high system operation flexibility, while the continuous (infinite) modal operation ensures complete smoothing system behavior and full operation modal compatibility versus system varying parameters. The realization of the continuous (infinite) modal design is carried out through symbolic-based embedded control expressions using computational mathematics.

The proof of concept of proposed approach is demonstrated through two illustrative examples as well as an application representing the experimentation of control of inverted pendulum system with varying cart mass operation. The results of the implementation to the selected application are depicted comprising the executed embedded symbolic-based functions using microcontroller/Proteus simulation program configuration equipped with functional programming facility for feedback gains expressions executions.

Finally, it is recommended that shift should gradually turn towards extra exploration of the experimentation of symbolic-based embedded stabilization expressions within the framework of generic mathematical control strategies.

Chapter 1

Introduction

The control system is a set of components that act together and perform a certain function that has one or more well-defined inputs and one or more well-defined outputs. In studying control systems, the systems dynamics must be presented in mathematical formulation terms and an analysis of their dynamic characteristics is exerted. A system is called linear if the principle of superposition applies. Dynamic systems that are composed of linear time-invariant parameter components may be described by linear time-invariant differential equations. Such systems are called linear time-invariant (LTI) or linear constant-coefficient systems. Systems that are represented by differential equations whose coefficients are functions of time are called linear time-varying (LTV) systems. [1]

A system is described as linear parameter varying system (LPV) when its parameters are dependent on the varying signal p while the dynamic relation between input signals u and output signals y is still linear as shown in Figure 1.1. [2]

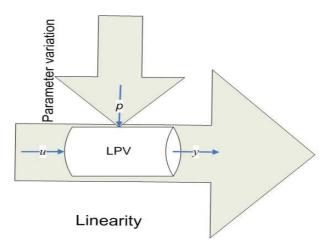


Figure 1.1: Input-output signal flow of LPV systems.

Linear parameter-varying (LPV) systems are linear dynamical systems whose mathematical description or state-space representations depends on parameters that change values over time.

These parameters are generally considered as bounded and taking values inside a set Δ_{ρ} . LPV systems are commonly described by equations of the form

$$\dot{x}(t) = A(\rho(t))x(t) + E(\rho(t))w(t), \ t \ge 0
z(t) = C(\rho(t))x(t) + F(\rho(t))w(t)
x(0) = x_0$$
(1.1)

where x, w and z are the state, the input and the output of the system, respectively. The parameter vector ρ acts internally on the system by modifying its structure overtime, and,