APPLICATION OF BIOTECHNOLOGY IN PLANT-BASED VACCINE PRODUCTION AGAINST HERPES SIMPLEX VIRUS

By

AYA HUSSEIN MUSTAFA AL-TURKEY

B.Sc. Agric. Sci., (Microbiology), Ain Shams University, 2007

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER IN SCIENCE

in

Agriculture science

(Agriculture viruses)

Department of Microbiology

Faculty of Agriculture

Ain Shams University

2015

ABSRTACT

Aya Hussein Al-Turkey: Application of Biotechnology in Plant Based Vaccine Production Against Herpes Simplex Virus. Unpublished M.Sc. thesis, Department of Microbiology, Faculty of Agriculture, Ain Shams University, Egypt, 2015.

Herpes simplex virus (HSV) is a DNA-viral genome and causing infection for both human and animal. HSV-2 is a sexually-transmitted virus. It is prevalence in European countries and also in Egyptian-closed societies i.e. in Upper Egypt.

Egyptian isolate of HSV-2 was isolated and its Glycoprotein D (gD) subunit was amplified, cloned and sequenced for characterization and detection. HSV-2gD subunit was amplified, using specific forward and reverse primers, with 1021 bp fragment size. The PCR product was cloned in One Shot Top 10 chemically competent *E.coli* cells using PCR 2.1/TOPO/ TA cloning vector. DNA insert was liberated from 1 μg recombinant plasmid by using the restriction endonuclease EcoR1. HSV-2 insert was successfully sub-cloned by ligation intopurified binary vector PBI 121, using restriction endonucleases XbaI and T4 DNA ligase enzyme and transformed in DH5α competent *E.coli* cells.

Agrobacterium tumifaciens LBA 4404 strain competent cells were prepared. HSV-2gD subunit-containing binary vector PBI 121 were transformed into Agrobacterium for Agro-inoculation. Explants of Castell Rock and MPI tomato varieties were inoculated with the HSV-2gD-PB21 binary vector-treated Agrobacterium competent cells. Agro-inoculated tomato plants were tested for HSV-2gD insert occurrence by PCR. The expression of gD was confirmed through the RT_PCR for the messenger RNA as well as ELISA for the expressed protein. The results were successful in getting transgenic tomatoes expressing the HSV-2gD as a step forward to develop an edible plant vaccine which is the aim of the study.

Key words:

Herpes simplex virus 2 –Polymerase chain reaction (PCR) – cloning – agro-inoculation–*Agrobacterium* Transformation - edible vaccine – tomato tissue culture – oral vaccines – gene expression – sexual transmitted disease.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	V
Abbreviation	VIII
INTRODUCTION	1
REVIEW OF LITRATURE	3
MATERIALS AND METHODS	45
Source of virus isolate	45
I. Genomic Material and Polymerase Chain Reaction	47
I.1.PCR amplification	47
I.2.Electrophoresis analyses	48
- Development of HSV-2 gD constructs	
II.Molecular cloning	51
II.1.Ligation	51
II.2.Plasmidtransformation	51
II.3.Preparation of recombinant plasmids	52
II.4.Restriction digestion of plasmid DNA	53
II.5.DNA automatic sequencing	53
III.Molecular sub cloning	53
III.1. Creation of cloning sites	53
III.2. Gel extraction and plasmid purifycation	54
III.3. Ligation for sub-cloning	54
III.4.Comptent cell preparation	55
III.5.Transformation	

I.V. Agrobacterium preparation and Tomato transformation57
IV.1. Preparation of explants57
IV.1.1. Sterilization of tomato seeds57
IV.1.2. Seeds germination57
IV.1.3. Preparation of explants for transformation57
IV.2. Co-cultivation of explants with <i>Agrobacterium</i> 57
IV.2.1. Preparation of Agrobacterium competent Cell57
IV.2.2.Transformation of Agrobacterium transformation competent
cell by heat shock58
-PCR Colony58
IV.2.3. Preparation of Agrobacterium for co- cultivation58
IV.2.4. Co-cultivation explants with Agrobacterium59
IV.3. Regeneration and selection of transformed explants59
IV.3.1. Regeneration59
IV.3.2. Elongation59
IV.3.3. Rooting60
IV.3.4. Planting in soil and hardening60
II.V. Analysis of the transgenic plants for successful Transformation60
II.V. 1. Screening for DNA using PCR60
II.V.1.1. Isolation of total DNA from plant tissue60
II.V.1.2. PCR61
II.V.2.Expression analysis
II.V.2.1. Isolation of total RNA from plant tissue61
II.V.2.2. One step RT-PCR62
II.V.3Analysis for the protein expression63
-ELISA63
Solutions and buffers64

RESULTS	67
DISCUSSION	90
SUMMARY	95
REFERENCES	98
ARABIC SUMMARY	

LIST OF TABLES

Table No. Page
1- Representative plant-based vaccines: under clinical development or in
market (Kumar B <i>et al.</i> , 2013)23
2- Examples of recombinant protein (Bacterial Antigens) produced in
Solanum lycopersicum in the last five years (2007–2012) (Maria
Manuela Rigano et al., 2013)32
3- Examples of recombinant protein (ViralAntigens) produced in
Solanum lycopersicum in the last five years (2007–2012) (Maria
Manuela Rigano et al., 2013)34
4- Examples of recombinant protein (Human Antigens) produced in
Solanum lycopersicum in the last five years (2007–2012) (Maria
Manuela Rigano et al., 2013)37
5- The amino acid expressed from HSV-2gD75

LIST OF FIGURES

Fig. No. Page
1-The multiple cloning sites (MCS) of the vector including the sites of the different restriction enzymes49
2-A: The construct design in the plasmid. B: the features of PBI 121 vector and the sequence surrounding the PBI 121 Cloning site50
3-Electrophoresis for PCR product of Egyptian isolates HSV-2 Gd68
4- The minipreparation for pCR2.1-TOPO/HSV-2 cloning vector69
5- The <i>EcoRI</i> digestion of the 2.1/TOPO/TA /HSV-2 glycoprotein D clones
6- HSV-2 glycoprotein D nucleotide sequence72
7- Nucleotide sequence and derived amino acids74
8- <i>XbaI</i> digestion for the TOPO /HSV-2 gD constructs and the linearized PBI 121 vector digested with <i>XbaI</i> enzyme digestion
9- HSV-2/gD gene cleane with QIAquieck gel extraction kit
10- PBI 121 gene clean with PCI78
11- The minipreparation for pCR2.1-TOPO/HSV-2 cloning vector78
12- PCR for sub clones to check the write orientation for the insert (glycoprotein D)

Fig. No.	ge
13- PCR colony for Agrobacterium transformation containing	
glycoprotein D80)
14-Germinated tomato seeds after 15 days old8	1
15- Agro-inoculated tomato plant's cotyledons were arranged so that	
they tough each other	32
16- Agro-inoculated plants in the regeneration stage	33
17- Transformed tomato plants in elongation stage	34
18- Electrophoreses analysis for PCR amplification of the HSV-2/GD	35
19- Electrophoreses analysis for RT-PCR amplification of the HSV-	
2/gD	6
20- ELISA plate coat with anti-gD antibody to capture the gD protein	n,
showing positive results indicating that tomato transgenic plan	ıts
infected with HSV-2gD produce the gD recombina	
protein	37
21-The absorbance of each sample as a key for the ELISA plate A. HP	C:
Healthy plant control	38
22-Transformed Mp1 plants in the rooting stage	39

Abbreviation

A	Adenine
Agri	Agriculture
ARC	Agriculture research center
BSA	Bovine serum albumin
bp	base pair
CR	Castle Rock
С	Cytosine
°C	Centigrade
Dept	Department
DNA	Deoxyribonucleic acid
dNTP	Dideoxy nucleotide triphosphate
E.Coli	Escherichia Coli
EDTA	Ethylene diamine tetra acetic acid
e.g	For example (Exampli gratia)
ELISA	Enzyme Linked Immunesorbent Assay
et al.	And other (et alii)
Fac.	Faculty
Fig.	Figure
g	Gram
G	Guanine
НСР	Healthy control plant
hr.	Hour
HBV	Hepatitis B virus
HIV	Human immunodeficiency virus
HSV-1	Herpes Simplex Virus-1
HSV-2	Herpes Simplex Virus-2
IAA	Indole acetic acide
IBA	Indol Butyric Acid
IgG	Immunoglobin G
IPTG	IsopropyleB-D-thioglalacto Pyranoside
Kb	Kilobase

LB	Luria Borth
ml	Milliliter
mg	Milligram
min	Minute
μg 1	Microgram
μl	Microliter Molar
M	
MS	Murashinge & Sookg
NCBI	National Center for Biotechnology Information
nt	Nucleotide
O.D	Optical density
PBS	phosphate buffere saline
PBST	phosphate buffere saline Tween-80
PCI	Phenol Chloroform Isoamyl Alcohol
PCR	Polymerase chain reaction
Res	Research
RT-PCR	Reverse transcriptase Polymerase chain reaction
rpm	Revolution per minutes
RNA	Ribonucleic acid
RNAse	RNAase inhibitor
S	second
SDS	Sodium dodecyle sulfate
STI	Sexually Transmitted Infection
TBE	Tris-boric acid-EDTA
T	Thiamine
U	Unit
Univ	University
UV	Ultraviolet
(v/v)	Volume/Volume
w/v	Weight/Volume
X-Gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside

ACKNOWLEDGMENT

All the greatest gratefulness, deepest appreciation and sincerest thanks to **ALLAH** for all gifts which given to me and for enabling me to overcome all problems which I faced in my and throughout the course of this investigate and helping me to achieve this work in the ideal as possible.

The author wishes to express her deepest gratitude and indebtedness to the supervisor of the present work **Prof. Dr. Badawi Abdel-Salam Othman,** Professor of Virology, Microbiology Dept., Fac. Agric., Ain Shams Univ., for his great help, encouragement, invaluable guidance up to the final preparation of this manuscript

The author indebted to **Prof. Dr. Khaled Abdel-Fattah El-Dougdoug,** Professor of Virology, Microbiology Dept., Fac. Agric., Ain Shams Univ., for his unlimited valuable help.

I would like to thank **Prof. Dr. Mamdouh Hussien Abdel-Gaffar,** Professor of Virology, Microbiology Dept., Fac. Agric., Ain Shams Univ., who has given me the idea of this work and I'm grateful to him for leading me during my work start.

I would like to thank **Prof. Dr. Aboulata El-Nady Aboulata**, Professor of Plant Virology, Molecular Biology lab. 2; Plant viruses and phytoplasma Res Dept., Plant Pathology Inst., ARC. For his sincere encouragement, scientific support, keeping interest and his helps in provision of all facilities needed for the present work.

I'm also indebted to **Dr. Ahmed Kamal Abdel-Samad** Researcher of Plant Virology, at the Plant Viruses and Phytoplasma Res Dept., Plant Pathology Inst., ARC. His constructive and valuable advice, kind guidance, and great assistance in the preparation of this thesis in its final form.

I'd like to thank **Dr. Ashraf Abd-Allah,** dr. of. Virology, Medical Microbiology Department, Al-Azhar Faculty of Medicine for Girls for his great help.

I'd like to thank all my colleagues in the virus department, my friends in the molecular biology lab, Plant Pathology Research Institute, ARC, Egypt, for their continuous support and help.

I. INTRODUCTION

Herpes simplex virus (HSV) infections of the skin are caused by one of two viruses (HSV-1 or HSV-2). Cutaneous *Herpes simplex* is characterized by painful, burning, or pruritic clusters of vesicles on the lips, oral mucous membranes, genital region, or other areas of the body. HSV infection of the eye results in keratoconjunctivitis, a serious condition that sometimes leads to corneal blindness. HSV may also cause encephalitis or other systemic infections, particularly in immune-compromised patients. Studies of vulnerable patient populations have indicated that daily use of antivirals such as acyclovir and valacyclovir can reduce reactivation rates (Koelle and Corey 2008).

After a primary infection, the virus travels to a nerve cell ganglion where it persists in a dormant phase. Various factors such as sun exposure, chapping or abrasion of the skin, fever, stress, fatigue, or menstruation can reactivate the virus, resulting in a recurrence at the site of the original infection. Recurrences are common, particularly in the case of genital infections. (Nahmias *et al.*, 1990; Chen *et al.*, 2000; Stanberry *et al.*, 2000; Wald *et al.*, 2000).

Genital herpes is associated with a two- to three-fold increased risk of HIV acquisition and an up to five-fold increased risk of HIV transmission per-sexual act, and may account for 40% to 60% of new HIV infections in populations where HSV-2 has a high prevalence HIV, in turn, increases the risk of HSV-2 transmission. Outbreaks of HSV-2 are generally more severe, extensive, persistent, and invasive for those with more advanced HIV disease. In fact, persistent HSV-2 infection was one of the original opportunistic infections that resulted in the identification of AIDS (Corey *et al.*, 2004).

Genetic transformation of plant cells by *Agrobacterium tumifaciens* is the only known natural example of transkingdom DNA transfer. In nature, *Agrobacterium* introduces several oncogenic genes into the host plant, leading to formation of tumors, and in the laboratory this microorganism is

used widely for plant genetic engineering. *Agrobacterium* infection requires the presence of two genetic components located on the bacterial tumorinducing (Ti) plasmid: the transferred DNA (T-DNA), which is introduced into the plant cell genome, and the virulence (*vir*) region composed of seven loci—*virA*, *virB*, *virC*, *virD*, *virE*, *virG*, and *virH* encoding most components of the protein apparatus for T-DNA transfer. The infection process begins by chemotactic attraction of *Agrobacterium* toward wounded sites on the host plant, attachment of the bacteria to the plant cell surface, and activation of the T-DNA transfer machinery. During the attachment, *Agrobacterium* first loosely binds to the plant surface, and then it produces cellulose fibrils that tighten the binding and allow attachment of additional bacteria (Matthysse *et al.*, 2000)

Tomato (*Lycopersicon esculentum* Mill.) is an important solanaceous vegetable crop grown throughout the world for its versatile uses. It is one of the most important protective foods as it possesses appreciable quantities of vitamins and minerals and sometime rightly referred to as poor man's orange (Devi *et al.*, 2008). It is grown throughout the country where irrigation water and arable land are available (Abdelmageed *et al.*, 2003). Currently, plant tissue culture of tomato used for many different purposes such as callus induction and plant regeneration. Plant regeneration is a key facilitator component in genetic transformations, using *Agrobacterium tumefaciens*, electroporation and particle bombardment. So, *In vitro* regeneration of cultivated tomato has been a subject of research because of the commercial value of the crop and its amenability for further re improvement via genetic manipulation (Evans 1989).

Transgenic plants are the plants in which foreign genes of desired characters have to be inserted. Transgenic plant have been found to have many advantages like, development of high yielding varieties of crop plants and disease resistant, and are plants with improved tolerance to biotic and abiotic stress. Moreover; transgenic plants can be used to develop edible vaccines against human viruses. To date, however, only a few vaccines are available for administration by these routes. A promising avenue to