Relation between Plasma Cell Free Fetal DNA level and uteroplacental blood flow in pre-eclamptic Women

Protocol of Thesis Submitted for Fulfillment of Master Degree in Obstetrics and Gynecology

By

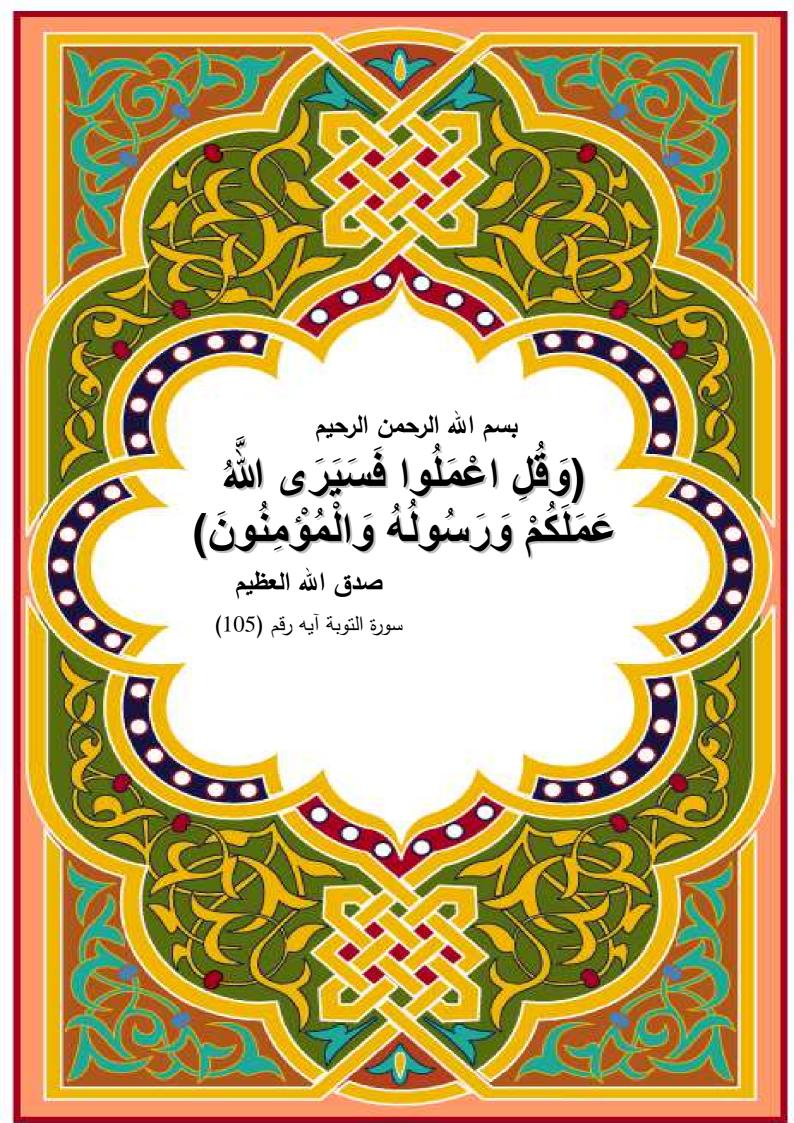
Sherif Mohammed El Sirgany

(M.B.B.Ch)

Research Fellow, National Research Center

Supervisor Prof. Mahmoud Emad Salem

Professor of Obstetrics and Gynecology Faculty of Medicine Cairo University


Dr.Wael Tharwat El Garf

Assistant Professor of Molecular Genetics Reproductive Health and Family planning Department National Research Center

Dr. Omnea Mohamed Osman

Lecturer of Obstetrics and Gynecology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2012

Abstract

The purpose of this study to evaluate the cffDNA level in maternal venous samples obtained from pre-eclamptic pregnant women and whether it shows a correlation with uteroplacental blood flow or not. One hundred and twenty pregnant women during third trimester who attended Cairo university hospital (El Kasr El Aini) participated in this cross sectional study between January (2011) – January (2012). Maternal venous samples were obtained from them for cffDNA extraction. Sixty samples were obtained as control from normotensive pregnant women and sixty from pre-eclamptic women. Doppler U/S including umbilical artery RI, uterine artery RI, PI and MCA / Umb PI ratio was done to these pregnant women.

Key Words:

DYS 14 - RASSF1A - RAR B2.

ACKNOWLEDGMENT

I offer my thanks always to ALLAH, for his great care and guidance in every step of my life and for giving me the ability to complete this work.

It was a great pleasure for me to be supervised by Prof. Mahmoud Emad Salem, Professor of Obstetrics and Gynecology, faculty of Medicine, Cairo University, for his generous, accurate supervision, also for his great support, helpful advice and patience to produce this work.

I would like to express my deep gratitude to Prof. Osama Mahmoud Azmy, Professor of Obstetrics and Gynecology, Reproductive health and family planning Department, National Research Centre for suggesting such an interesting point of research and valuable expertise supervision, his constant support and encouragement are very much appreciated.

I am greatly indebted and grateful to Prof. Wael Tharwat El Garf, Assistant Professor of molecular genetics, Reproductive health and family planning Department, National Research Centre who helped me a lot, for his fruitful collaboration in supervising this work, he was always a patient professor and offered me a great deal of his effort and time.

My appreciation is expressed to Dr. Omnia Mohammed Osman, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for her big effort, experience and support during completing this work.

I also wish to express my love and gratitude to my family for their endless support and unyielding faith in me. They have wholeheartedly endured my

anxious with serenity and love throughout the duration of my studies. The completion of this thesis would have never been conceivable without their fervent motivation.

Last but not least I wish to express my sincere appreciation to my professors, dear colleagues and all staff members of Reproductive health and family planning Department, National Research Centre for their help and support throughout this work.

The present work is supported in part by Science and technology development project, No.549, 2010 to Dr. Wael Tharwat Elgarf and Dr. osama Mahmoud Azmy.

List of contents

No.	Title	Page		
1.	Introduction			
2.	Aim of work			
3.	. Review of literature:			
	Chapter 1: Pre-eclampsia	6		
	Chapter 2: Uteroplacental blood flow	14		
	Chapter 3: Plasma cell free fetal DNA	32		
4.	Patient & Methods	57		
5.	Results	71		
6.	Discussion			
7.	Conclusion & Recommendation			
8.	Summary	97		
9.	References	99		

List of tables

No.	Table	
Table.1	PCR Reaction	
Table.2	Demographic Characteristics of Women Recruited	
Table.3	Descriptive statistics of cell free fetal DNA among	
	patient and control groups	
Table.4	Cell Free Fetal-DNA Level among Cases and Control	
Table.5	Mean RI Umbilical Artery Doppler Measurement	77
	among Cases and Control	
Table.6	Right Uterine Artery Doppler Measurement among	78
	Cases and Control	
Table.7	Left Uterine Artery Doppler Measurement among	79
	Cases and Control	
Table.8	Middle Cerebral Artery Doppler Measurement among	
	Cases and Control	
Table.9	Correlation between Mean Umbilical Artery Doppler	82
	and Level of Cell Free Fetal-DNA	
Table.10	Correlation between Mean Right Uterine Artery	83
	Doppler and Cell Free Fetal-DNA Level	
Table.11	Correlation between Mean Left Uterine Artery Doppler	85
	and Level of Cell Free Fetal-DNA	
Table.12	Correlation between Mean Middle Cerebral Artery	87
	Doppler Measurement and Level of Cell Free Fetal-	
	DNA	

List of figures

No.	Figure				
Fig.1	Flow velocity indices				
Fig.2	.2 Normal flow velocity waveforms from the umbilical				
	vein				
Fig.3	Uterine artery Doppler in non-pregnant woman				
Fig.4	Uterine artery Doppler in a pregnant woman				
Fig.5	Pregnant uterine artery waveform in the first trimester				
Fig.6 Pregnant uterine artery waveform in the second		20			
	trimester				
Fig.7	Pregnant uterine artery waveform in the third trimester				
Fig.8 Abnormal pregnant uterine artery waveform		21			
	demonstrating high resistance				
Fig.9	illustrates notching with a normal Resistance Index				
Fig.10	10 illustrates notching with an abnormal Resistance Index				
Fig.11	Transverse view of the fetal head with color Doppler	30			
	showing the circle of Willis				
Fig.12	Flow velocity waveforms from the middle cerebral	31			
	artery at 32 weeks of gestation				
Fig.13	Ultrasound image with color Doppler showing the	61			
	umbilical cord				
Fig.14	Ultrasound image with color Doppler showing the	62			
	uterine artery				
Fig.15	Transverse view of the fetal head with color Doppler	63			
	showing the circle of Willis				
Fig.16	16 Thermal Profile				
Fig.17	The mean maternal age and gestational age among	73			

Fig.18 The mean cffDNA level among study groups Fig.19 The mean of cffDNA level among the study groups Fig.20 The mean of umbilical artery Doppler RI among the	75 76 77
Fig.20 The mean of umbilical artery Doppler RI among the	77
study groups	
Fig.21.a The mean of Rt. uterine artery Doppler RI among study	78
groups	
Fig.21.b The mean of Rt. uterine artery Doppler PI among study	79
groups	
Fig.22.a The mean Lt. uterine artery Doppler RI among study	80
groups	
Fig.22.b The mean Lt. uterine artery Doppler PI among study	80
groups	
Fig.23 The mean MCA PI /umbilical artery PI ratio among	83
study groups	
Fig.24 The mean umbilical artery Dopper RI and cffDNA	83
level among study groups	
Fig.25.a The mean Rt. uterine artery RI and cffDNA level	84
among study groups	
Fig.25.b The mean Rt. uterine artery PI and cffDNA level	85
among study groups	
Fig.26.a The mean Lt. uterine artery Doppler PI and cffDNA	86
level among study groups	
Fig.26.b The mean Lt. uterine artery Doppler RI and cffDNA	87
level among study groups	
Fig.27 Mean MCA PI / umbilical artery PI ratio and cffDNA	88
level among study groups	

Abbreviations

No.		
1.	cffDNA	Cell Free Fetal DNA
2.	RASSF1A	RAS-associated domain family 1
3.	RI	Resistant Index (peak systolic flow – end diastolic flow / peak systolic flow)
4.	PI	PulsatilityIndex (peak systolic low – end diastolic flow / mean flow)
5.	SRY	Sex-determining Region Y " sex-determining gene on Y chromosome"
6.	DYS 14	DYS 14 marker located on Y chromosome "Multicopy sequence of DYS 14 on Y chromosome"
7.	DYZ 3	DYZ 3 marker located on Y chromosome "Multicopy sequence of DYZ 3 on Y chromosome"
8.	CD 34	It's a cell surface glycoprotein & function as a cell-cell adhesion factor.
9.	CD 58	It's a cell adhesion molecule expressed on Antigen Presenting Cells (APC) particularly macrophage
10.	RAR B2	Retinoic Acid Receptor B2
11.	UdTP	Uridine deoxy Tri Phosphate

Introduction

Introduction

Hypertension is a common medical complication during pregnancy, preeclampsia belongs to a group of hypertensive disorders in pregnancy that can be divided into gestational hypertension, chronic hypertension, preeclampsia, and pre-eclampsia superimposed on chronic hypertension (Brown et al., 2001). Pre-eclampsia occurs in 2-5% of pregnancies but complicates up to 10% of pregnancies in developing countries, where emergency care is often inadequate or lacking (Simon et al., 2009). The incidence is 4.1% in the first pregnancy and 1.7% in later pregnancies overall, however the risk of recurrence is 14.7% in the second pregnancy for women who had preeclampsia in their first pregnancy and 31.9% for women who had preeclampsia in the previous two pregnancies (Sonia et al., 2009). Recurrence of pre-eclampsia is influenced by many factors, including the presence of underlying illness, genetic tendency, and change of partners (Sibai et al., 1996).

Severe pre-eclampsia is associated with significant maternal morbidity, including eclamptic seizures, intracerebral haemorrhage, pulmonary oedema or heart failure, acute renal failure, liver dysfunction, and coagulation abnormalities. Fetal complications include abruptio placentae, intrauterine growth restriction, premature delivery, and intrauterine fetal death (Douglas et al., 1994), with 0.4% maternal mortality rate (Douglas et al., 1994) and 10-15% in the developing countries (Asia, Africa, Latin America and the Caribbean)(Duley et al., 1992).

One of the main aims of routine antenatal care is to identify mothers or babies at risk of adverse outcomes; Doppler ultrasound is a part of antenatal care which uses sound waves to detect the movement of blood in vessels. It studies blood circulation in the baby, the mother's uterus and the placenta. Medical interventions may improve outcomes in cases of abnormal blood circulation (Stampalija et al., 2010).

Assuming that defective placental circulation results in adverse pregnancy outcome, Doppler ultrasonography has been used as a modality to evaluate placental circulation and fetal well being for about three decades (Divon et al., 2001). Abnormal development of placental vasculature is considered as the pathophysiological basis for development of pre-eclampsia (Cunningham et al., 2005) and this could be reflected in abnormal umbilical Doppler velocimetry. In normal pregnancies, the feto-placental circulation acts as a low resistance system unit. Thus, the blood velocity waveforms in umbilical artery (UA) show continuous forward flow throughout the cardiac cycle (Divon et al., 2001).

High-resistance uterine artery Doppler in the third trimester of pregnancy is able to predict adverse postpartum outcome (De Melo et al., 2010). Women with late-onset pre-eclampsia show a higher risk of perinatal complications if uterine resistance is increased although maternal outcome does not seem to be related to Doppler findings (Ghi et al., 2009). Doppler waves of middle cerebral artery (MCA) can predict most of fetuses in high risk pregnancies (Tarzamni et al., 2008). Several studies have shown the efficacy of the middle cerebral artery (MCA) Doppler assessment during pregnancy (Gramellini et al., 1992; Bahlmann et al., 2002).

Cell free fetal DNA in maternal plasma has opened up new possibilities for non invasive prenatal diagnosis of sex-linked disorders (Costa et al., 2002), fetal rhesus D (RhD) status (Bianchi et al., 2005) and β -thalassemia (Chiu et al., 2002).

Several studies reported that in patients with pre-eclampsia, the maternal plasma concentration of cell free fetal DNA (cffDNA) using a Y-chromosomal DNA sequence is increased from 2 to 15 fold higher than in normotensive control subjects (Lo et al., 1999; Crowley 2007). It has been postulated that impaired trophoblastic invasion of the maternal spiral arteries leads to placental ischemia with release of necrotic or apoptotic syncytiotrophoblast fragments that contain fetal DNA into the maternal circulation (Levine et al.,2004; Farina et al.,2004). In addition to evidence for increased entry of cffDNA into the maternal circulation, there is also evidence for reduced clearance of cffDNA from maternal plasma (Lau et al., 2002). There is controversy whether the altered levels precede the onset of the disease or not (Leung et al., 2001; Crowley 2007).

Recently, the promoter of the *RASSF1A* tumor suppressor gene (RAS-association domain family 1) has been demonstrated as hypermethylated in the placenta but hypomethylated in maternal blood cells. Consequently, the background maternally derived hypomethylated *RASSF1A* sequences could potentially be removed by methylation-sensitive restriction enzyme digestion, whereas the hypermethylated placental (fetal) *RASSF1A* sequences are resistant to methylation-sensitive restriction enzyme digestion and thereby should be detectable and quantifiable by real-time PCR (Lum et al., 2010). The quantitative measurement of a fetal DNA target that could be similarly detected in both male or female pregnancies is useful for monitoring and predicting pregnancy-related conditions associated with aberrant fetal DNA concentrations, including pre-eclampsia (Lo et al., 1999) and certain fetal chromosomal aneuploidies (Zhong et al., 2000).

Aim of the work

The purpose of this study to evaluate the cffDNA level in maternal venous samples obtained from pre-eclamptic pregnant women and whether it shows a correlation with uteroplacental blood flow.