Relationship of obesity and visceral adiposity with serum concentrations of CRP, and IL-6 in Adults

Thesis

Submitted for Partial Fulfillment of M.Sc Degree in Clinical and Chemical Pathology

By Noha Mohammad Reda

M.B., B.Ch. Faculty of Medicine, Cairo University

Supervised by Professor / Amani Ibrahim Saleh

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Professor / Shahira Fathy el Fedawy

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor/Rania Ahmed Abo Shady

Lecturer of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2011

TABLE OF CONTENTS

LIST OF ABBREVIATIONS	I
LIST OF FIGURES	V
LIST OF TABLES	
INTRODUCTION AND AIM OF THE WORK	
REVIEW OF LITERATURE	1
INTRODUCTION TO OBESITY	4
1. PATHOGENESIS AND MECHANISMS OF OBESITY	
Lifestyle Genetics	
Medical illness	
Neurobiological mechanisms	
Microbiological aspects	
Social determinants	11
2. TYPES OF OBESITY	13
Negative Consequences	14
Metabolic Syndrome	14
3. OBESITY AND THE IMMUNE SYSTEM	17
What are adipokines and what do they do?	18
Adipokines and inflammation	
Causes and consequences of inflammation in obesity	21
4. OBESITY AND THE CHRONIC DISEASE	
Obesity with hypertension	
Obesity with Type II diabetes	
Obesity and Gallbladder disease Obesity and Coronary heart disease and stroke	
Obesity with Osteoarthritis	
Obesity and Endometrial cancer	
Obesity and Breast cancer	28
Obesity and Colon cancer	30
INTERLEUKIN-6	32
INTRODUCTION	32
IL-6 and its circadian secretion in humans	
Interleukin-6 as a myokine	
Interleukin-6 and insulin action	
IL-6 receptor	36

Functions of IL-6	
Interleukin-6 in acute inflammation	
Interleukin-6 in chronic inflammation	
Interleukin-6 and chronic disease	39
INTERLEUKIN-6 WITH OBESITY	41
Interleukin-6 as an adipokine	41
Central actions of interleukin-6	43
Do abnormalities in interleukin-6 or its action contribute to the	
development or maintenance of obesity?	
The potential role of interleukin-6 as a drug target for weight regulation	
C-REACTIVE PROTEIN	40
C-REACTIVE PROTEIN	49
INTRODUCTION	49
Genetics and biochemistry	
Function	
Role in cardiovascular disease	
Role in cancer	53
C-REACTIVE PROTEIN AND OBESITY	55
Role of adipose tissue in secretion of C-reactive protein	56
OTHER ADIPOCYTOKINES RELATED TO OBESITY	58
Leptin	58
Adiponectin	59
Resistin	
Visfatin	
Tumor necrosis factor-alpha (TNF-α)	
Monocyte chemoattractant protein-1	
Interleukin-1	
SUBJECT AND METHODS	67
STATISTICS AND RESULTS	76
DISCUSSION	92
SUMMARY AND RECOMMENDATIONS	98
REFERENCES1	01
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

AF	Atrial fibrillation
AgRP	Agouti-related peptide
Ala	Alanine
AMP	Adenosine monophosphate
AMPK	AMP-activated protein kinase
ARC	Arcuate nucleus
Asp	Aspartate
ATMs	Adipose tissue macrophages
BMI	Body mass index
CAD	Coronary artery disease
CART	Cocaine- and Amphetamine-regulated transcript
CCR2	CC Chemokine receptor2
CD	Cluster of differentiation
CLA	Conjugated linoleic acid
CNS	Central nervous system
CNTF	Ciliary neurotrophic factor
CR	Concentric remodeling
CRP	C-reactive protein
CVD	Cardiovascular disease
Da	Dalton
DHEA	Dehydroepiandrosterone
EIA	Enzyme immunoassay
ELISA	Enzyme-linked immunosorbent assay
EO	Extremely obese
ER	Estrogen receptor
ESR	Erythrocyte sedimentation rate
GLUT	Glucose transporter
gp130	Glycoprotein 130
HDL-C	High-density lipoprotein-cholesterol

HER2	Human epidermal growth factor 2
HF	Heart failure
HMG-COA	3-hydroxy-3-methyl-glutaryl-CoA
HMW	High molecular weight
HR	Heart rate
HRP	
	horseradish peroxidase
HS ba CDD	Highly significant
hs-CRP	High-sensitivity C-reactive protein
ICAM-1	Inter-Cellular Adhesion Molecule-1
ICV	Intracerebroventricular
IFN-γ	Interferon-gamma
IGF	Insulin like growth factor
IL	Interleukin
IL-6R α	Interleukin 6 receptor α
IL-1RI	Interleukin 1 type I receptor
IL-1Ra	Interleukin 1 receptor antagonist
IRS	Insulin receptor substrate
ISPs	Inflammation-sensitive plasma proteins
JAKs	Janus kinases
KDa	kilodalton
LA	Left atrium
Lepr	Leptin receptor
LH	Lateral hypothalamus
LHA	Lateral hypothalamus area
LIF	Leukemia inhibitory factor
LMW	Low molecular weight
LV	Left ventricular
LVH	Left ventricular hypertrophy
MCP-1	Monocyte chemoattractant protein-1
MCSF	Macrophage colony stimulating factor
MI	Myocardial infarction
MIF-β	Macrophage migration inhibitory factor-β

mRNA	Messenger Ribonucleic acid
MSR	Macrophage scavenger receptor
N	Number
NAC	N-acetyl cysteine
NF	Nuclear factor
NGF	Nerve growth factor
NPY	Neuropeptide Y
NS	Non significant
NW	Normal weight
OD	Optical density
OW/OB	Overweigt/Obese
PAI-1	Plasminogen activator inhibitor-1
PAMPs	Pathogen associated molecular patterns
PBEF	Previously known as B cell colony enhancing
1 DEF	factor
PD-1	Programmed cell death 1
PDL	Programmed cell death ligand 1
POMC	Pro-opiomelanocortin
PVN	Paraventricular nucleus
RV	Right ventricular
S	Significant
SAA	Serum amyloid A
SC	Subcutaneous
SD	Standard deviation
SOCS	Suppression of cytokine signalling
STATs	Signal transducers and activators of transcription
Std	Standard
TGF-β	Tumor growth factor-beta
TNF-α	Tumor necrosis factor-alfa
TMB	Tetramethylbenzidine
TLRs	Toll-like receptors
VCAM-1	Vascular cell adhesion molecule-1

List of Abbreviations

VEGF	Vascular endothelial growth factor
VMH	Ventromedial hypothalamus
WAT	White adipose tissue

LIST OF FIGURES

Figure 1: Model of central regulation of food intake in the
hypothalamus10
Figure 2: Adipokines linked to inflammation and the
inflammatory response21
Figure 3: Overview of Leptin Resistance and Hyperleptinemia
in Obesity-Related Cardiovascular Disease24
Figure 4: Pathophysiology of Obesity and Cardiomyopathy 26
Figure 5: Scheme of the production and non-inflammatory
functions of IL-6 on skeletal muscle, liver and adipose
tissue35
Figure 6: C-reactive protein51
Figure 7: Scatter diagram showing a highly significant
correlation between CRP and BMI in obese individuals
(group1)85
Figure 8: Scatter diagram showing a significant correlation
between CRP and Waist circumference in obese individuals
(group1)86
Figure 9: Scatter diagram showing a highly significant
correlation between IL-6 and Waist circumference in obese
individuals (group 1)88
Figure 10: Scatter diagram showing a significant correlation
between IL-6 and BMI (group 1)89

LIST OF TABLES

Table 1: Age and Anthropometric measures for group 1 (obese) 76
Table 2: Age and Anthropometric measures for group 2 (non obese)
Table 3: CRP concentration in the studied groups77
Table 4: IL-6 concentration in the studied groups77
Table 5: Comparison between the studied groups regarding
different anthropometric measures78
Table 6: Comparison between the studied groups regarding CRP and IL6
Table 7: Correlation between weight and other parameters
among group 1
among group 280
Table 9: Correlation between height and other parameters
among group 1 subjects80
Table 10: Correlation between height and other parameters
among group 281
Table 11: Correlation between BMI and other parameters
among group 181
Table 12: Correlation between BMI and other parameters
among group 282
Table 13: Correlation between Waist Circumference and other
parameters among group 182
Table 14: Correlation between Waist Circumference and other
parameters among group 283
Table 15: Correlation between CRP and other parameters
among group 183
Table 16: Correlation between CRP and other parameters
among group 284
Table 17: Correlation between IL-6 and other parameters
among group187

Table 18: Correlation between IL-6 and other parameters	
among group 2	87
Table 19: Multiple linear regression analysis for CRP and	
anthropometric measures in group 1	90
Table 20: Multiple linear regression analysis for IL-6 and	
anthropometric measures in group 1	90

INTRODUCTION

Obesity is a steady increasing health problem that is defined as increased mass of adipose tissue. It causes complications such as, diabetes mellitus, hypertension, stroke, coronary heart disease, cardiomyopathy, non-alcoholic steatohepatitis, osteoarthritis, reproductive problems, sleep apnea, gall bladder disease and some cancers as endometrial, breast and colon (*Al-Hazimi*, 2004).

Adipose tissue is an important source of cytokines, and adiposity contributes to the proinflammatory milieu. Serum cytokine levels are elevated in humans and animals with excess adiposity (*Park et al.*, 2004).

Approximately, 30% of circulating IL-6 is estimated to be from adipose tissue. Moreover, some reports have suggested that visceral adipose tissue secretes more IL-6 than subcutaneous adipose tissue (*Park et al.*, 2004).

Obese patients demonstrate a variety of biochemical and metabolic abnormalities. Considerable interest has been raised regarding the role of interleukin-6 (IL-6) in mediating the host response to obesity and (*Roytblat et al.*, 2000) showed that serum IL-6 concentrations were positively correlated with the level of obesity as assessed by body mass index (BMI). They hypothesized that adipose tissue may play a role in the regulation of serum IL-6 production. IL-6 released from adipose

tissue may cause low-grade systemic inflammation in persons with excess body fat (*Chaikate et al.*, 2006).

C-reactive protein (CRP) has been used as an acute phase reactant and a marker of systemic inflammation. Moreover, CRP has been recognized as a very useful and sensitive predictor of the future risk of myocardial infarction (MI) and stroke in the past several years. It is well known that CRP levels in adult subjects elevate with aging, excess of body mass index (BMI), and smoking. It has been proven that weight loss and the improvement of insulin resistance lead to decreases of CRP levels (*Hiura et al.*, 2003).

In additional to overall obesity, the accumulation of visceral adipose tissue is a key factor responsible for the upregulation of low-grade chronic inflammation in obese subjects. These findings suggest that decreasing obesity and visceral adiposity may prevent the elevation of cytokine levels as well as atherosclerosis (*Park et al.*, 2004).

AIM OF THE WORK

The objective in this study is to assess serum concentrations of CRP and the cytokine IL-6 in obese and non obese individuals in order to determine the relationship between their levels with obesity and visceral adiposity.

INTRODUCTION TO OBESITY

Obesity is one of the major medical problems in the western world. The clinical definition of obesity is a body mass index (BMI) of 30 or higher. The BMI is the body's weight in kilograms divided by the square of the body's height in meters ("http://www.wisegeek.com/", 2011).

Obesity results when a person ingests more calories than he or she can burn off. If this happens regularly over a period of time, the body will store the extra calories as fat. The body is able to burn off calories as energy needed throughout the day, but if the energy is not burned away, it will be stored as fat ("http://www.wisegeek.com/", 2011).

Obesity is a condition that represents a serious worldwide threat to public health (*Haslam and James*, 2005) and it is a disease that brings several complications and increases the risk of other diseases like metabolic syndrome, diabetes mellitus type II, coronary heart disease (*Gnacińska et al.*, 2010 a), hypertension, gallbladder disease, osteoarthritis and certain types of cancer (*Neilson and Scleinder*, 2005). Epidemiological studies have demonstrated that lifestyle choices, accumulated across the life course, greatly influence the risk of developing obesity (*Brasil et al.*, 2007).

Greater consumption of high-fat and energy-dense food is generally considered to be associated with the increasing prevalence of obesity (*Howarth et al.*, 2006). Another contributory factor for the development of obesity is an individual's genetic background. Large differences in prevalence of obesity have been reported across different ethnic groups (*Tanaka et al.*, 2003).

However, increases in energy expenditure through sports and other forms of physical activity have been reported as important lifestyle factors that enhance overall health and prevent the development of central obesity (*Jakicic and Otto*, 2006).

Obesity results from the interaction of many factors, including genetic, metabolic, behavioral and environmental influences (*Kumanyika et al.*, 2002). Likely a combination of increasing energy consumption and decreasing energy expenditure has led to a positive energy balance and a marked increase in excess weight in the society (*Stein and Colditz*, 2004).