IN VITRO STUDY OF NEUTROPHIL APOPTOSIS IN CHRONIC HEPATITIS C PATIENTS

Thesis

Submitted for Partial Fulfillment for M.D. Degree

In

(Clinical and Chemical Pathology)

By
Magda Ahmed Moustafa
M.B. B.Ch., M.Sc

Supervisors

Prof. Dr. Mervat M. El-Ansary
Professor of Clinical Pathology

Faculty of Medicine, Cairo University Prof. Dr. Faiza Essawy

Professor of Haematology
Theodor Bilharz Research
Institute

Prof. Dr. Maysa El-Razky

Professor of Tropical Medicine
Faculty of Medicine,
Cairo University

Faculty of Medicine Cairo University 2008

Abstract

The aim of this study was to detect the role of neutrophil apoptosis as a mechanism of liver cell injury in chronic hepatitis C in order to determine its relation to shortened neutrophil survival in HCV patients, accounting in part for the mechanism of neutropenia.

Thirty patients with chronic HCV infection were selected for this study and divided into two groups, fifteen patients with chronic HCV without neutropenia (Group I) (8 males and 7 females) and fifteen patients with chronic HCV with neutropenia (Group II) (7 males and 8 females). In addition fifteen apparently healthy individuals served as control group (6 males and 9 females).

Key Words:

Adrenocorticotrophic hormone - Alanine amino transferase - Annexin A1

ACKNOWLEDGEMENT

First of all great thanks and merciful to Allah

I Would like to express my greatest gratitude and respect to *Professor Dr. Mervat Saad El-Ansary*, *Professor of Clinical Pathology*, *Faculty of Medicine*, *Cairo University*, who sacrificed a good deal of her valuable time and experience to guide me throughout the whole work, it's a great honor, enjoyment to work under her guidance and supervision.

The words fail to express my grateful thanks, love and respect to *Professor Dr. Faiza El-Essawy*, *Professor of Haematology Department, Theodor Bilharz Research Institute*, for establishing the milestone of this research work, her instructive supervision guidance, patience, generous and meticulous cooperation to follow closely every step in this work.

I Would like to express my deepest gratitude and sincere thanks to *Professor Dr. Maysa El-Razky*, *Professor of Tropical Medicine*, *Faculty of Medicine*, *Cairo University*, for her effective guidance, valuable suggestions, unlimited help and unfailing support.

I Wish to express my deep appreciation and profound gratitude to *Professor Dr. Iman Abdel-Aziz*, Assistant Professor of Haematology Department, Theodor Bilharz Research

Institute, for her effective guidance, creative thinking, valuable suggestions and sincere initiating power.

I Would like to send my grateful thanks and appreciation to *Professor Dr. Amira Helmy*, *Assistant Professor of Electron Microscopy Department, Theodor Bilharz Research Institute*, for her excellent guidance and expertise in supervising the Electron Microscopy section in this thesis, I have benefited much from her valuable suggestions.

In fact, I owe much to my colleagues and staff members of Haematology Departments, Theodor Bilharz Research Institute, for their Kind help and moral support.

Magda Ahmed Moustafa

2008

To my Husband,

Father, Mother and

My Children Mohamed, Yara and Sara

Who suffered a lot during preparation of this work

CONTENTS

		Pages
*	Acknowledgements	
*	List of Tables	
*	List of Figures	
*	List of Abbreviations	
*	Introduction and Aim of the Work	1
*	Review of Literature	4
	Chronic Hepatitis C virus (HCV)	4
	> Introduction	4
	➤ Modes of HCV Transmission	6
	➤ Genomic Organization of Hepatitis C Virus	8
	≻ Genotypes	12
	➤ Diagnosis of Viral Hepatitis C	14
	➤ Assessment of Liver Fibrosis (Non Invasive Indices)	22
	➤ Haematologic Changes in HCV	23
	> Treatment of HCV	24
	<u>Apoptosis</u>	28
	➤ The History and Biology of Apoptosis	28
	➤ Intracellular Alterations During Apoptosis	31
	➤ Inducers and Inhibitors of apoptosis	38
	➤ The Mechanisms of Apoptosis Signalling Pathways	41
	➤ Importance of Apoptosis	48
	➤ The Regulatory Proteins for Apoptosis	51
	➤ The Annexins (the early apoptotic markers)	66
	➤ Normal Neutrophil Apoptosis	72
	➤ Methods to Detect and Measure Apoptosis	80
	(I) Techniques based on the morphological changes	80

		Pages
	(II) Techniques based on biochemical changes	82
	Apoptosis in HCV	85
	➤ Apoptosis in the Pathophysiology of HCV Infections	88
*	Subjects and Methods	95
*	Results	124
*	Discussion	159
*	Summary	179
*	Conclusion	184
*	Recommendations	185
*	References	186
*	Appendix	
*	Arabic Summary	

LIST OF FIGURES

Review of Literature	Pages
Figure (1):	
Diagramatic structure of HCV	9
Figure (2): The different regions of the HCV genome	11
Figure (3): The effect of different rates of cell death on homeostasis	29
Figure (4): Sequence of ultrastructural changes in apoptosis and necr	osis 30
Figure (5): An apoptotic cell showing multiple apoptotic bodies	32
Figure (6): The extrinsic (death receptor) pathway of apoptosis	43
Figure (7): The intrinsic pathway of apoptosis	45
Figure (8): The extrinsic and intrinsic pathways of apoptosis	46
Figure (9): The BCL-2 family contains members that are both pro and antiapoptotic	52
Figure (10): The function of the different types of P53	55
Figure (11): The central role of P53 in cell-cycle arrest, DNA repair and a following UV irradiation	apoptosis 56

Figure	(12):	
J	Human Caspase family	58
Figure	<i>(13)</i> :	
	One method by which cytotoxic T-cells induce their targets (e.g. wirus-infected cells) to commit suicide (apoptosis)	66
Results	<u>S:</u>	
Figure	(1): Sex ratio in the different groups	127
Figure	(2):	
J	CBC in the diseased groups	130
Figure	(3):	
0	Results of Annexin V by flow cytometry in different groups	139
Figure	(4): The results of Annexin V by flow cytometry showing the gating	areas
		139
Figure	<i>(5)</i> :	
	Mean value of apoptotic cells in the different groups	143
Figure	<i>(6)</i> :	
- 93	The nuclei with fragmented DNA were labeled green with	
	fluorescein-12 –dUTP and the cells were counterstained with propidium iodide in red	145
Figure	<i>(7)</i> :	
_	Mean value of sFas test in the different groups	147
Figure	(8):	
J	Results of light Microscope.	148-150
Figure	<i>(9)</i> :	
J	Normal mature neutrophil.	152
Figure	(10):	

	PMN cell in HCV patient showing cell surface membrane ruffles and blebs	152
Figure	(11): PMN cell in HCV patient showing early apoptotic morphology.	153
Figure	(12): PMN cell in HCV patient showing fragmented nucleus.	153
Figure	(13): Ultrathin section of PMA cell in HCV patient showing late apoptotic morphology	154
Figure	(14): Electron micrograph of PMN cell in HCV patient showing late apoptotic morphology.	154
Figure	(15): Ultrathin section of PMN cell in HCV patient showing the late apoptotic morphology	155
Figure	(16): High magnification of the released apoptotic bodies from the cells	155
Figure	(17): A significant negative correlation between absolute neutrophils count and dual cells by flow cytometry in chronic HCV group with neutropenia	156
Figure	(18): A significant positive correlation between ALT and cells taken PI dye by flow cytometry in chronic HCV group with neutropenia	157
Figure	(19): A significant positive correlation between apoptotic cells by TUNEL Test and ALT level in chronic HCV group	158

LIST OF TABLES

Review of Literature	Pages
Table (1): Death receptors and their ligands	42
Subjects and methods:	
Table (1): Preparation of TdT incubation buffer for experimental and positive and negative control reactions	103
Table (2): Protocol overview for use of the apoptosis detection system, fluorescent microscopy of attached cells	106
Results:	
Table (1): Summary of clinical data in the different groups	126
Table (2): The results of CBC between the two patients groups	129
Table (3):	
Absolute neutrophil count in different groups	131
Table (4): The results of blood chemistry of different groups	134
Table (5):	
Annexin V by flow cytometry in the control group per 100 cells	136
Table (6):	
Annexin V by flow cytometry in the control hepatitis C group per 100 cells	137

Table (7):	
Annexin V by flow cytometry in the chronic hepatitis	
C with neutropenia group per 100 cells	138
Table (8):	
Annexin V in patients groups in comparison to control group	140
Table (9):	
Annexin V between the two patients groups	141
Table (10):	
The results of sum of Annexin and dual cells in comparison to control group	141
Table (11):	
The number of apoptotic cells by TUNEL test in the different groups	143
Table (12):	
The results of apoptotic cells by TUNEL test	144
Table (13):	
The results of sum of apoptotic cells in the two diseased groups in comparison to the control group by TUNEL test	144
Table (14):	
The results of sFas in the different groups	146
Table (15):	
sFas results in the patients groups to the control group	147

LIST OF ABBREVIATIONS

ACTH Adrenocorticotrophic hormone

AIF Apoptosis inducing factors

ALT Alanine amino transferase

ANXA1 Annexin A1

Apaf-1 Apoptotic protease activating factor-1

APRI Aspartate amino transferase (<u>AST</u>) to platelet ratio index

AST Aspartate amino transferase

ATP Adenosine triphosphate

Bad Bcl-xL/Bcl-2 associated death promoter

Bak Bcl-2 antagonist killer

Bax Bcl-2 associated x protein

BcL-2 B-cell lymphoma 2

Bid BH-3 interacting death domain protein

Bik Bcl-2 interacting Killer

BIR Baculovirus IAP repeat domain

CARD Caspase activation and recruitment domain

Caspase Cysteinyl aspartic acid protease

CAT Catalase

CGD Chronic granulomatous disease

CHC Chronic hepatitis C

CTL Cytotoxic T lymphocyte

Cyt-c Cytochrome c

DBD DNA-binding core domain

DD Death domain

DED Death effector domain

DIABLO Direct IAP-binding protein with low PI

DIAP1 Drosophila inhibitor of apoptosis protein1

DISC Death inducing signaling complex

EC Extracellular domain

EIA Enzyme immuno assay

ELISA Enzyme linked immunosorbent assay

FADD Fas associated death domain

Fas Factor of apoptotic signal

Fas-L Fas ligand

FHF Fulminant hepatic failure

FITC Fluorescein isothiocyanate

FLICE FADD-like interleukin-1 converting enzyme

FLIPs FLICE inhibitory proteins

G-CSF Granulocyte colony stimulating factor

HBV Hepatitis B virus

HCL Hepatoma cell lines

HCV Hepatitis C virus

HDV Hepatitis D virus

HIV Human immunodeficiency virus

HVR Hypervariable region

IAPs Inhibitors of apoptosis proteins

IC Intracytoplasmic domain

ICE Interleukin-1β converting enzyme

IFN- α Interferon alpha

IGF-BP3 Insulin like growth factor binding protein-3

IRES Internal ribosome entry site

ISEL In situ end labelling

KDa Kilo Dalton

LAD-1 Leucocyte adhesion deficiency-1

LPS Lipopolysaccharide

LTB4 Leukotriene B4

MAC Membrane attack complex