

#### APPLICATION OF DYNAMIC ARC THERAPY TECHNIQUE FOR TREATMENT OF HEAD AND NECK TUMORS

Presented By

#### **Mohamed Saber Ibrahim**

B.Sc. in physics 1999

A thesis submitted as partial fulfillment of the requirement for the degree of Master of Science in Biophysics

#### Supervised by

Prof. Dr. El-Sayed Mahmoud El-Sayed Prof. Dr. Abdel Sattar Mohamed Sallam

Professor of Biophysics Physics Department Faculty of Science, Ain Shame University Faculty of Science, Ain Shame University

Professor of Biophysics Physics Department

Dr. Mohamed Metwaly Mohamed Consultant Radiotherapy Physics The Beatson West of Scotland Cancer Center

> Ain Shams University Faculty of Science Department of physics (2014)

### APPROVAL SHEET

### Title of the M.Sc. Thesis

### APPLICATION OF DYNAMIC ARC THERAPY TECHNIQUE FOR TREATMENT OF HEAD AND NECK TUMORS

### Name of the Candidate

## **Mohamed Saber Ibrahim El-Basuny**

| <u>Supervisors</u>       |                                   | (Signature                  | <u>:</u> ) |
|--------------------------|-----------------------------------|-----------------------------|------------|
| Prof. Dr. El-Sayed Mah   | moud El-Sayed<br>Professor of Bio | (                           | .)         |
|                          | Physics Departs                   | 1 0                         |            |
|                          | • 1                               | nce, Ain Shame University   |            |
| Prof. Dr. Abdel Sattar I | Mohamed Sallam                    | <b>(</b>                    | .)         |
|                          | Professor of Bio                  | ophysics                    |            |
|                          | Physics Departs                   | ment                        |            |
|                          | Faculty of Scient                 | nce, Ain Shame University   |            |
| Dr. Mohamed Metwal       | y Mohamed                         | (                           | .)         |
|                          | Consultant Rad                    | iotherapy Physics           | •          |
|                          | The Beatson W                     | est of Scotland Cancer Cent | er         |



Name: Mohamed Saber Ibrahim El-Basuny

**Degree:** Master

**Department:** Physics-Biophysics Group

Faculty: Science

**University:** Ain Shams

**Graduation Date:** 1999

**Registration Date:** 4/2009

**Grant Date:** 2014

### **ACKNOWLEDGEMENT**

I wish to express my deep gratitude to **Prof. Dr. EI-Sayed Mahmoud**, Professor of Biophysics, Department of Physics, Faculty of Science, Ain Shame University, for his supervision, advice and reviewing the manuscript.

I wish to express my deep appreciation to **Prof. Dr. Abdel Sattar Sallam**, Professor of Biophysics, Department of Physics, Faculty of Science, Ain Shame University, for his supervision, constructive criticism and deep concern of this work.

I would like to express my gratitude and appreciation to **Dr. Mohamed Metwaly Mohamed,** Consultant Radiotherapy Physics, The Beatson West of Scotland Cancer Center, U.K. for his supervision, advice, critical comments, fruitful discussion, reviewing the manuscript and continuous support.

I would like to introduce my great appreciation to **my colleagues and consultants** in the departments of radiation physics and radiotherapy in Maadi Armed Forces Medical Compound as well as to the family of the department of physics, faculty of science, Ain Shame University, for their encouragement and pushing forward of this work.

Special thanks are directed to all the **members** of my family for their assistance and encouragement.

# **CONTENTS**

## Subject Page

| LIST OF ABBREVIATIONS1                                                                 |
|----------------------------------------------------------------------------------------|
| LIST OF SYMBOLS3                                                                       |
| LIST OF<br>FIGURES4                                                                    |
| LIST OF Tables10                                                                       |
| ABSTRACT11                                                                             |
| CHAPTER 1: INTRODUCTION AND AIM OF THE                                                 |
| <u>WORk</u> 13                                                                         |
| (1-1) Introduction                                                                     |
| Chapter 2: Radiotherapy Technology and Clinical Background on the Head and Neck Canc16 |
| (2-1) Part I RadiotherapyTechnology16                                                  |
| (2-1-1) Linear Accelerator                                                             |
| (2-1-2) Patient immobilization21                                                       |
| (2-1-3) Three Dimensional Conformal Radiotherapy22                                     |

| (2-1-4) Intensity Modulated Radiotherapy25             |
|--------------------------------------------------------|
| (2-1-5) Arc therapy26                                  |
| (2-1-6) Electronic Portal Image Device27               |
| (2-1-7) The Radiotherapy Network                       |
| (2 1 /) The Rudiotherapy Protivork                     |
| (2-2) Part II Clinical Background on the Head and      |
| Neck tumors30                                          |
| (2-2-1) Head and Neck Anatomy30                        |
| (2-2-2) What is the Nasopharyngeal cancer?32           |
|                                                        |
| (2-2-3) Risk Factors                                   |
| (2-2-4) Symptoms of Nasopharyngeal cancer              |
| (2-2-5) Diagnosing of Nasopharyngeal Cancer36          |
| (2-2-6) Grading and Staging of Nasopharyngeal Cancer38 |
| (2-2-7) Prognosis of untreated Nasopharyngeal Canc41   |
| (2-2-8) Nasopharyngeal Cancer treatment options42      |
|                                                        |
|                                                        |
| Chapter 3: Literature Review on Radiotherapy Planning  |
| Techniques of Head and Neck Cancer47                   |
| (0.4) 0 I.B. II. II. BI. I.                            |
| (3-1) Conventional Radiotherapy Planning               |
| Techniques 47                                          |
| (3-2) Three Dimensional Conformal Radiotherapy, 3D-    |
| CRT                                                    |
| (3-3) Intensity Modulated Radiotherapy, IMRT51         |
|                                                        |
|                                                        |
| Chapter 4: Materials and Methods61                     |
|                                                        |
| (4-1) Patient Positioning and Immobilization62         |
| (4-1) Patient Positioning and Immobilization           |

| (4-9) Plans verification                                                                   | 69 |
|--------------------------------------------------------------------------------------------|----|
| Chapter 5: Results, Discussion and Conclusion                                              | 73 |
| (5-1) Part I: Results and discussion of the treatme techniques of nasopharyngeal carcinoma |    |
| (5-1-1) W-DAT plan optimization                                                            |    |
| (5-2) Part II: Dosimetric verification of the W-DAT                                        |    |
| (5-3) Conclusion                                                                           |    |
| SUMMARY                                                                                    | 95 |
| REFERENCES                                                                                 | 97 |
| ملخص الرسالة                                                                               | 1  |

### List of Abbreviations

**3D-CRT**: Three-dimensional conformal radiation therapy.

**CT**: Computed tomography.

CTV: Clinical target volume.

**DD**: Dose difference.

**DI**: Dose inhomogeneity.

**DTA**: Distance to agreement.

**DVH**: Dose volume histogram.

**EDR**: Extended dose range.

**EWF:** Extend whole field.

**GTV**: Gross target volume.

**HB-IMRT**: Half beam intensity-modulation radiation therapy.

**HT**: Helical tomotherapy.

**FP-IMRT**: Forward planning intensity-modulation radiation therapy.

**IMRT**: Intensity-modulation radiation therapy.

**IP-IMRT**: Inverse planning intensity-modulation radiation therapy.

MLC: Multileaf collimator

**OAR**: Organs at risk.

PRV: Planning risk volumes.

PTV: Planning target volume.

PTV1: Sites of gross disease (primary tumor).

PTV2: Site of microscopic disease (upper and lower neck).

**SF:** Split Field

**VBV**: Virtual brain stem volume.

VMAT: Volumetric modulated arc therapy.

VMAT-S: Volumetric modulated arc therapy with smart arc.

**WB-IMRT**: Whole beam intensity-modulation radiation therapy.

W-DAT: Wedged dynamic arcs therapy.

### **List of Symbols**

D<sub>max</sub>: Maximum dose to any volume.

 $D_{mean}$ : Mean dose to any volume.

**D**<sub>median</sub>: Median dose to any volume.

 $D_{min}$ : Minimum dose to any volume.

 $D_{modal}$ : Modal dose to any volume.

**DV%:** Dose that covers Vx % of any volume, as obtained from the mean dose volume histograms.

**VD%:** Volume that is covered by Dx % of the prescribed dose (78 Gy), as obtained from the mean dose volume histograms.

 $V_{Dmax}$ : Volume that is covered by the maximum dose.

 $V_{Dmin}$ : Volume that is covered by the minimum dose.

# **List of Figures**

| Chapter 2. | Radiotherapy Technology and Clinical                           | Page. |
|------------|----------------------------------------------------------------|-------|
|            | Background on the Head and Neck Cancer                         |       |
| Figure 2.1 | Dual photon energy linear accelerator manufactured by          | 17    |
|            | Varian (model 23EX), Palo Alto, California; the gantry,        |       |
|            | Collimator, treatment couch and portal vision device are       |       |
|            | clearly shown.                                                 |       |
| Figure 2.2 | A schematic diagram represents: (a) the normal jaws of the     | 20    |
|            | collimator which do not match the tumor shape (b) the MLC      |       |
|            | leaves that give the shape of the tumor.                       |       |
| Figure 2.3 | An immobilized patient by a head and neck thermoplastic        | 21    |
|            | mask.                                                          |       |
| Figure 2.4 | The beam eye view (BEV) of an anterior field for a case of     | 24    |
|            | head and neck tumor including clinical target volume CTV       |       |
|            | (red), spinal cord (yellow), Lt eye (brown), Rt eye (blue), Lt |       |
|            | parotid (green), Rt parotid (pink), Neck node (Cyan) and       |       |
|            | temporomandibular joint (translucent yellow).                  |       |
| Figure 2.5 | Head and Neck anatomy.                                         | 32    |

| Chapter 3. | Review on Radiotherapy Planning Techniques                   | Page. |
|------------|--------------------------------------------------------------|-------|
|            | of Head and Neck Cancer                                      |       |
| Figure 3.1 | (a) The 2-field beam arrangement with open fields, (b)       | 48    |
|            | spinal cord shielded fields [Fletcher and Million, 1980].    |       |
| Figure 3.2 | 3-field beam arrangement [Fletcher and Million, 1980].       | 49    |
| Figure 3.3 | The field portals used for treatment of the (a) anterior and | 49    |
|            | (b) posterior lower neck lymphatics.                         |       |
| Figure 3.4 | A 7-field arrangement.                                       | 50    |
| Figure 3.5 | Spilt field (SF) technique                                   | 55    |
| Figure 3.6 | Extend whole field (EWF) technique                           | 56    |

| Chapter 4. | Materials and Methods                                          | Page. |
|------------|----------------------------------------------------------------|-------|
| Figure 4.1 | Fields arrangement and isodose distribution for wedged         | 65    |
|            | dynamic arc therapy technique in (a) transversal, (b) frontal, |       |
|            | (c) sagittal and the (d) dose-volume histograms for site of    |       |
|            | gross disease (PTV1), microscopic disease (PTV2) and           |       |
|            | organs at risk.                                                |       |
| Figure 4.2 | (a) The two anterior-posterior conformal fields conforming     | 66    |
|            | to the beam's eye view of site of gross disease (PTV1). (b)    |       |
|            | Another two anterior-posterior conformal fields conforming     |       |
|            | to the beam's eye view of site of microscopic disease          |       |
|            | (PTV2).                                                        |       |
| Figure 4.3 | A photograph shows the positioning of the cylindrical          | 70    |
|            | phantom in which a pinpoint ion chamber is located for         |       |
|            | isocenteric dose measurements.                                 |       |
| Figure 4.4 | A photograph shows the positioning of the 30 x 30 x 30 cm      | 71    |
|            | Solid Water slab phantom in which a EDR2 film is inserted      |       |
|            | during film calibration.                                       |       |
| Figure 4.5 | A photograph shows the positioning of the Alderson             | 72    |
|            | phantom in which Kodak EDR2 films are inserted at two          |       |
|            | levels located in the regions of the site of gross disease     |       |
|            | (PTV1) and microscopic disease (PTV2)                          |       |

| Chapter 5.   | Results, Discussion, Conclusion and Summary                    | Page. |
|--------------|----------------------------------------------------------------|-------|
| Figure 5.1   | Dose volume histogram (DVH's) analyses for all sites of gross  | 74    |
|              | disease (PTV1).                                                |       |
| Figure 5.2.a | Dose volume histogram (DVH's) analyses for all sites of RT     | 75    |
| Figure 5.2.b | neck (PTV2's).                                                 |       |
|              | Dose volume histogram (DVH's) analyses for all sites of LT     | 75    |
|              | neck (PTV2's).                                                 |       |
| Figure 5.3.a | Dose volume histogram (DVH's) analyses for all Rt Parotids.    | 76    |
| Figure 5.3.b | Dose volume histogram (DVH's) analyses for all Lt Parotids.    | 76    |
| Figure 5.4   | Dose volume histogram (DVH's) analyses for all Brain Stems.    | 76    |
| Figure 5.5   | Dose volume histogram (DVH's) analyses for all Spinal cords.   | 77    |
| Figure 5.6   | Dose volume histogram (DVH's) analyses for all Mandibles.      | 77    |
| Figure 5.7   | Comparison between isodose curves for (a) Intensity-           | 80    |
|              | modulation radiation therapy (IMRT) technique and (b)          |       |
|              | Wedged dynamic arcs therapy (W-DAT) technique displayed        |       |
|              | on the axial, coronal and sagittal planes through the centroid |       |
|              | of the primary tumor and the Dose volume histogram (DVH)       |       |
|              | .for the relevant structures.                                  |       |

|               |                                                                 | 0.2 |
|---------------|-----------------------------------------------------------------|-----|
| Figure 5.8    | Comparison between isodose distribution for (a) Intensity-      | 82  |
|               | modulation radiation therapy (IMRT) (b) Volumetric modulated    |     |
|               | arc therapy with smart arc (VMAT-S) (c) Helical tomotherapy     |     |
|               | (HT) and (d) Wedged dynamic arcs therapy (W-DAT)                |     |
|               | technique.                                                      |     |
| Figure 5.9    | Comparison between isodose curves for (a) Rapidarc technique    | 86  |
|               | and (b) Wedged dynamic arcs therapy (W-DAT) technique           |     |
|               | displayed on the axial, coronal and sagittal planes through the |     |
|               | centroid of the primary tumor and the Dose volume histogram     |     |
|               | .(DVH's) for the relevant structures.                           |     |
| Figure 5.10.a | Deviation between the measured and calculated dose for          | 89  |
|               | nasopharynex level.                                             |     |
| Figure 5.10.b | Deviation between the measured and calculated dose for brain    | 89  |
|               | stem level.                                                     |     |
| Figure 5.11   | Example of gamma index distributions for measured and           | 90  |
|               | calculated dose distributions for the nasopharynx level.        |     |
| Figure 5.12   | Example of gamma index distributions for measured and           | 91  |
|               | calculated dose distributions for the neck node level.          |     |
| Figure 5.13   | Failed pixels percentage in wedged dynamic arc dose             | 92  |
|               | distribution as compared with the gamma acceptance criteria     |     |
|               | (3% dose difference and 3 mm distance to agreement) for         |     |
|               | nasopharynx level.                                              |     |
|               | 1                                                               |     |