

PRIMARY FREQUENCY CONTROL FOR WIND TURBINE

By

Abdulhameed Shueai Hassan Alsharafi

A thesis submitted to the Faculty of Engineering at Cairo University in partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

PRIMARY FREQUENCY CONTROL FOR WIND TURBINE

By

Abdulhameed Shueai Hassan Alsharafi

A thesis submitted to the Faculty of Engineering at Cairo University in partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Hassan Mohamed Rashad Emara

Dr. Ahmad Hussein Tawfeek Besheer

Professor
Electrical Power and Machines Department
Faculty of Engineering
Cairo University

Assistant Professor Environmental Studies & Research institute University of Sadat City

PRIMARY FREQUENCY CONTROL FOR WIND TURBINE

By

Abdulhameed Shueai Hassan Alsharafi

A thesis submitted to the
Faculty of Engineering at Cairo University
in partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee: Prof. Dr. Hassan Mohamed Rashad Emara Professor in Electrical Power and Machines Department Faculty of Engineering - Cairo University. Thesis Main Advisor

Dr. Ahmad Hussein Tawfeek Besheer Advisor Assistant Professor in University of Sadat City.

Prof. Dr. Mohamed Salah ElsobkiProfessor in Electrical Power and Machines Department

Internal Examiner

Faculty of Engineering - Cairo University.

Dr. Eng. Abou-Bakr Abdel-Hameed

First Deputy-Minister, Ministry of Elect. & Renewable Energy New & Renewable Energy Authority.

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer:** Abdulhameed Shueai Hassan Alsharafi.

Date of Birth: 01/01/1985 **Nationality:** Yemeni

E-mail: alsharafi.ab@pg.cu.edu.eg

Phone: +201124449678
Address: Giza - Egypt
Registration date: 01/03/2014
Awarding Date: / /2018

Degree: Master of science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Hassan Mohamed Rashad Emara

Professor in Electrical Power and Machines Department

Faculty of Engineering - Cairo University.

Dr. Ahmad Hussein Tawfeek BesheerAssistant Professor in University of Sadat City.

Examiners: Prof. Dr. Mohamed Salah Elsobki (Internal Examiner)

Professor in Electrical Power and Machines Department

Faculty of Engineering - Cairo University.

Dr. Eng. Abou-Bakr Abdel-Hameed (External Examiner)

First Deputy-Minister, Ministry of Elect. & Renewable Energy

New & Renewable Energy Authority.

Prof. Dr. Hassan Mohamed Rashad Emara (Thesis Main Advisor)

Professor in Electrical Power and Machines Department

Faculty of Engineering - Cairo University.

Dr. Ahmad Hussein Tawfeek Besheer (Advisor)

Assistant Professor in University of Sadat City.

Title of thesis:

Primary Frequency Control for Wind Turbine.

Key Words:

Frequency regulation, wind turbine, inertial controller, pitch controller.

Summary:

Primary frequency controls for wind turbine are discussed. Variable speed wind turbine connected with hydro turbine is simulated using Simulink/Matlab. Different scenarios are analyzed and compared, where several primary frequency control are used to support the frequency response after system disturbance with two different cases of wind speed, the first is high wind speed and the second is low wind speed. The thesis proposes two new controllers' structure based on combination strategy between different controllers. The best combined controller that leads to reducing the rate of change of frequency and raising the frequency nadir.

Acknowledgment

First, Thank to Allah who supported, helped and strengthened me in all of my life and in completing my study for the Master of Science degree.

I would like deeply to express my thanks and gratitude to my supervisors; Prof. Dr. Hassan Mohamed Rashad Emara and Dr. Ahmed Hussein Tawfeek Besheer for their faithful supervision, enormous efforts, and their great patience during the period of the research.

Finally, I would like thank my family & friends for their great inspiration, kind support, and continuous encouragement.

Dedication

This work is dedicated to my mother, my father's spirit & my family

To my wife & my daughters

To my friends

To my university professors

Table of Contents

Acknowledgment	I
Dedication	III
Table of Contents	V
List of Tables	VII
List of Figures	IX
Nomenclature	XIII
Abbreviations	XV
Abstract	XVII
Chapter 1: Introduction	1
1.1. Background	1
1.2. Frequency Control System	3
1.2.1. Frequency Response	4
1.2.2. System Inertia	5
1.3. The Grid Codes	6
1.4. Wind Power Impacts	8
1.5. Thesis Organization	9
Chapter 2: Frequency Control in Wind Power Environment	11
2.1. Wind Energy Conversion System	11
2.1.1. Aerodynamic Power	12
2.1.2. Wind Turbine Technologies	14
2.1.2.1. Fixed-speed wind turbine	14
2.1.2.2. Variable-speed wind turbines	14
2.2. Frequency control in Presence of the Wind Power	15
2.3. Primary frequency controllers	17
2.3.1. Inertial Controller	18
2.3.1.1. Releasing "hidden" inertia	19
2.3.1.1. Fast power reserve emulation	20
2.3.2. Droop controller	21
2.3.3. De-loading Control	23
2.3.3.1. Rotational speed control	24

2.3.3.2. Pitch control	25
Chapter 3: Modeling	27
3.1. Wind Turbine Model	27
3.2. Hydrodynamic Model	29
3.3. Modeling of a Hydro-Wind System	31
Chapter 4: Simulation Results	33
4.1. High Wind Speed	33
4.1.1. "Hidden" Inertia Emulation Control	33
4.1.2. Fast Power Reserve Emulation	36
4.1.3. Droop Control	37
4.1.4. De-loading / Modified Pitch Control	39
4.2. Low Wind Speed	42
4.2.1. "Hidden" Inertia Emulation Control	42
4.2.2. Fast Power Reserve Emulation	43
4.2.3. Droop Control	44
4.2.4. De-loading / Rotational Speed	45
Chapter 5: Combination of Primary Frequency Control	49
5.1. High Wind Speed	49
5.1.1. "Hidden" Inertia Emulation and Modified Pitch Control	49
5.1.2. Fast Power Reserve Emulation and Modified Pitch Control	52
5.2. Low Wind Speed	52
5.2.1. "Hidden" Inertia Emulation and Rotational Speed Control	52
5.2.2. Fast Power Reserve Emulation and Rotational speed control	54
5.3. Increasing of Wind Power Penetration Level	55
5.3.1. High Wind Speed	55
5.3.2. Low Wind Speed	57
Chapter 6: Conclusions and Future Work	59
6.1. Conclusions	59
6.2. Future Work	60
References	61

List of Tables

Table 1.1: under/over frequency limits	7
Table 1.2: Frequency range and its requirement in GB	7
Table 1.3: Frequency range and its requirement in Egypt	8
Table 2.1: Classification of control strategies	18
Table 3.1: Wind model parameters	28
Table 3.2: Pitch control parameters	28
Table 3.3: Hydro model parameters	30
Table 4.1: dynamic comparison in high wind speed case	4
Table 4.2: dynamic comparison in low wind speed case	48
Table 5.1: Combination controllers	49

List of Figures

Figure 1.1: Frequency control loops	3
Figure 1.2: General Frequency System Response	4
Figure 1.3: Main performance indicators of frequency response	5
Figure 1.4: The effect of system inertia to the frequency response	6
Figure 1.5: Frequency response with different wind power penetration level without frequency control	9
Figure 2.1: Components of wind turbine	12
Figure 2.2: Wind power coefficient curves	13
Figure 2.3: Typical power curve versus wind speed	13
Figure 2.4: Fixed speed wind turbines	14
Figure 2.5: Doubly fed induction generators	15
Figure 2.6: Wind turbine level controllers	16
Figure 2.7: Primary frequency controllers for VSWT	18
Figure 2.8: Releasing "hidden" inertia emulation controller	20
Figure 2.9: Fast power reserve emulation controller	21
Figure 2.10: Frequency droop characteristic	22
Figure 2.11: Droop control for variable speed wind turbines	22
Figure 2.12: Maximum power tracking curve	24
Figure 2.12: Rotational speed control	25
Figure 2.14: Traditional pitch control	25
Figure 2.15: Modified pitch control	26
Figure 3.1: Wind turbine block diagram model	27
Figure 3.2: block diagram of generator/load	29
Figure 3.3: hydro turbine and governor with rotor/load block diagram	30
Figure 3.4: Response of a hydraulic unit to 0.1 pu load change	31
Figure 3.5: Wind turbines connected to hydro dominant power system	32
Figure 4.1: Added active power to electrical power	33
Figure 4.2: Electrical power of VSWT with/without inertial emulation control (high wind speed)	34
Figure 4.3: Rotor speed response of VSWT with/without inertia emulation control.	34
Figure 4.4: Pitch angle of VSWT with inertia emulation control	35
Figure 4.5: Frequency response after the disturbance event with/without inertia emulation control	35
	ار ح

Figure 4.6: a) Electrical power of VSWT b) Rotor speed of VSWT c) Pitch angle of VSWT with/without fast power reserve emulation control
Figure 4.7: Frequency response after the disturbance event with/without Fast power reserve emulation control
Figure 4.8: a) Electrical power of VSWT b) Rotor speed of VSWT c) Pitch angle of VSWT with/without droop control
Figure 4.9: Frequency response after the disturbance event with/without droop control
Figure 4.10: a) Electrical power of VSWT b) Rotor speed of VSWT c) Pitch angle of VSWT with/without pitch control
Figure 4.11: Frequency response after the disturbance event with/without pitch control
Figure 4.12: Frequency response after the disturbance event with/without different controls in high wind speed
Figure 4.13: a) Electrical power of VSWT b) Rotor speed of VSWT with/without inertia emulation control
Figure 4.14: Frequency response after the disturbance event with/without inertia emulation control in low wind speed
Figure 4.15: a) Electrical power of VSWT b) Rotor speed of VSWT with/without fast power reserve emulation control
Figure 4.16: frequency response after the disturbance event with/without fast power reserve emulation control in low wind speed
Figure 4.17: a) Electrical power of VSWT b) Rotor speed of VSWT with/without droop control
Figure 4.18: Frequency response after the disturbance event with/without droop control in low wind speed
Figure 4.19: a) Electrical power of VSWT b) Rotor speed of VSWT with/without rotational speed control
Figure 4.20: Frequency response after the disturbance event with/without droop control in low wind speed
Figure 4.21: Frequency response after the disturbance event with/without different controls in low wind speed
Figure 4.22: Contributed power of wind turbine vs wind speed for only inertia emulation control case
Figure 5.1: a) Electrical power b) Rotor speed c) Pitch angle of VSWT with/without combined controllers
Figure 5.2: Frequency response after the disturbance event with/without combined controllers
Figure 5.3: a) Electrical power b) Rotor speed c) Pitch angle of VSWT with/without combined controllers

Figure 5.4: Frequency response after the disturbance event with/without combined controllers in low wind speed	52
Figure 5.5: a) Electrical power b) Rotor speed of VSWT with/ combined controllers	53
Figure 5.6: Frequency response after the disturbance event with/without combined controllers in low wind speed	53
Figure 5.7: a) Electrical power b) Rotor speed of VSWT with/without combined controllers	54
Figure 5.8: Frequency response after the disturbance event with/without combined controllers in low wind speed	55
Figure 5.9: The ROCOF vs wind power penetration level in high wind speed case	56
Figure 5.10: Frequency nadir vs wind power penetration level in high wind speed case	56
Figure 5.11: The ROCOF vs wind power penetration level in low wind speed case	57
Figure 5.12: Frequency nadir vs wind power penetration level in low wind speed case	
	58