Role of Diffusion MRI & Dynamic contrastenhanced MRI in assessment of hepatocellular carcinoma after transarterial chemoembolization

Thesis

Submitted for partial fulfillment of MD degree of radiodiagnosis

Presented by Ali Haggag Ali Noreldien

Msc. radiodiagnosis Faculty of medicine Ain Shams Univeristy

Supervised by Prof. Dr.: Fatma Salah El-dien Mohammed

Professor of radiodiagnosis Faculty of medicine Ain Shams Univeristy

Prof. Dr.: Hanaa Abd Elkader Abd Elhamed

Professor of radiodiagnosis
Faculty of medicine
Ain Shams Univeristy

Dr.: Yosra Abd Elzaher Abdallah

Leacturer of radiodiagnosis
Faculty of medicine
Ain Shams Univeristy

Faculty of medicine
Ain Shams Univeristy
2013

دور التصوير بواسطة الرنين المغناطيسى بطريقة الانتشار و الرنين المغناطيسى الدينامكى بعد حقن الصبغه فى تقييم سرطان الكبد الخلوى بعد العلام بواسطة الحقن الكيماوى الشريانى

رساله توطئه للمصول على درجه الدكتوراه في الأشعه التشفيصيه

مقدمه من الطبيب/ على حجاج على نور الدين ماجستير الأشعه التشخيصيه كلية الطب ـ جامعة عين شمس

تحت اشراف

أ.د./ فاطمه صلاح الدين محمد أستاذ الأشعه التشخيصيه كلية الطب ــ جامعة عين شمس

أ.د./ هناء عبد القائر عبد الحميد أستاذ الأشعه التشخيصييه كلية الطب ــ جامعة عين شمس

د/يسرا عبد الظاهر عبد الله مدرس الأشعه التشخيصيه كلية الطب ــ جامعة عين شمس

كلية الطب

جامعة عين شمس 2013

Contents

• Introduction	1
Aim of the work	4
Anatomy of the liver	5
Pathology of hepatocellular carcinoma	23
Physics of Diffusion MRI	41
Review of literature	56
Patients & methods	80
Results & illustrative cases	89
• Discussion	130
Summary & Conclusion	139
• References	142
Arabic summary	154

Index of Figures

Figure No.	Comment	Page
1-1	Superior, anterior & right lateral surfaces of the liver	6
1-2	Posterior & inferior surfaces of the liver	7
1-3	Anatomical lobes of the liver (poster-inferior view)	9
1-4	Liver segmental anatomy according to Couinaud classification	11
1-5	Normal anatomy of the portal- venous system	12
1-6	Normal anatomy of the celiac Artery	15
1-7	Hepatic venous drainage	17
1-8	Anatomy of the biliary system	18
1-9	CT segmental anatomy of the liver	21
1-10	MRI (T2WI) segmental anatomy of the liver	22
1-11	MR postcontrast image: segmental anatomy of the liver	22
2-1	Overview of the pathways and modifiers that lead to HCC development	25
2-2	Features of low grade dysplastic nodule (LGDN).	27
2-3	Features of high grade dysplastic nodule (HGDN).	28
2-4	Scheme for sub-classification of nodular HCC on gross appearance	29
2-5	Gross appearance of small nodular type with indistinct margins	30
2-6	Gross appearance of small & large simple nodular type.	31

Index of figures

2-7	Gross appearance of small & large	32
	simple nodular type, with extra-	
	nodular growth	
2-8	Gross appearance of small & large	33
	confluent multinodular type.	
2-9	Gross appearance of massive-type	33
	HCC in Eggel's classification	
2-10	Gross appearance of infiltrative	33
	pattern HCC, developed in a	
	cirrhotic liver	
2-11	Scirrhous HCC	34
2-12	Gross appearance of fibrolamellar	35
	hepatocellular carcinoma	
2-13	Gross appearance of green HCC	36
2-14	Coagulative necrosis of HCC	37
3-1	Water molecule movement in	42
	different media	
3-2	The effect of a diffusion-weighted	43
	sequence on water molecules	
	movement in restricted medium	
3-3	The effect of a diffusion-weighted	44
	sequence on water molecules in less	
	restricted medium	
3-4	Black blood diffusion weighted	46
	image	
3-5	Restricted diffusion of the	46
	endometrium	
3-6	A Graph illustrating signal intensity	47
	versus different b values at diffusion-	
	weighted imaging	
3-7	A Graph illustrating the logarithm of	49
	signal intensity versus b values at	
	diffusion-weighted imaging of	
	normal liver versus liver tumor.	
3-8	T2 shine through effect	50

Index of figures

3-9	Diffusion MR in hemangioma	51
3-10	ADC calculation and intravoxel	54
	incoherent motion (IVIM)	
4-1	Contrast enhanced sonography for	59
	HCC after chemoembolization	
4-2	Accumulation patterns of iodized oil	61
	on CT after TACE.	
4-3	Residual viable tumor with defective	62
	accumulation of iodized oil after	
	(TACE).	
4-4	Residual viable tumor after	63
	transcatheter arterial	
	chemoembolization on CT & MRI	
4-5	HCC post-chemoembolization on	65
	MRI	
4-6	Application of mRECIST assessment	68
4.7	for HCC	70
4-7	Visual liver lesion characterization	70
4.0	with DW MR imaging	72
4-8	MR imaging in moderately differentiated and well differentiated	73
	HCC	
5-1	Measurement of the maximum	84
J-1	transverse dimension of the	04
	enhancing tumor tissue	
5-2	Measurement of the mean ADC of	86
	the focal lesion	00
5-3	Comparison between histogram of	87
	the focal lesion one day before &	
	two days after (b)	
	chemoembolization	
6-1 to 7	Case 1	95-98
6-8 to 11	Case 2	99-100
6-12 to 20	Case 3	101-105
6-21 to 24	Case 4	106-107

Index of figures

6-25 to 30	Case 5	108-110
6-31 to 37	Case 6	111-114
6-38 to 42	Case 7	115-117
6-43 to 49	Case 8	118-120
6-50 to 56	Case 9	121-124
6-57 to 61	Case 10	125-127
6-62 to 64	Case 11	128-129

Index of Diagrams

Diagram No.	Comment	Page
1	Diagram illustrating comparison between	92
	the percent change in the mean ADC of	
	the tumor in patients with complete	
	response & those with partial response	
2	Scatter diagram, showing significant	93
	positive correlation between the %	
	change in the mean ADC versus the %	
	change in the diameter of the enhancing	
	tumor tissue	
3	ROC curve showing significant	94
	correlation between the % change in the	
	mean ADC of the tumor & the % change	
	in the diameter of the enhancing tumor	
	tissue	

Index of Tables

Table No.	Comment	Page
1	Comparison between pre & post-treatment diameter of enhancing tumor tissue, mean ADC & serum AFP level	90
2	Comparison between patients with complete & partial response regarding different statistical variables	91

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malignancy in the world and the third most common cause of cancer death, with 600,000 to 1 million new cases diagnosed each year (*Kloeckner et al.*, 2010).

Transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) is used in some cases as a bridge to liver transplantation. It is also used for patients with unresectable HCC, and has been shown to improve survival (*Kim et al.*, 2010).

Patients who undergo TACE are routinely monitored with imaging that determines subsequent therapeutic planning. Therefore, an accurate imaging method for estimating tumor necrosis is required. At the present time, there is no clear consensus on which imaging method should be used to monitor response of HCC to TACE (*Kim et al.*, 2010).

Early assessment of the effectiveness of TACE is critical in planning future therapy whether earlier treatment of residual viable portions of the tumor, delaying retreatment in cases of good response to avoid unnecessary toxicity, or switching to a different local-regional therapy approach (*Eisenhauer et al.*, 2009).

Assessment of tumor response after TACE on CT is generally based on the radio-opacity of the iodized oil that selectively accumulates in the tumor in addition to tumor enhancement and tumor size on contrast enhanced CT. Hyperattenuating iodized oil impairs assessment of residual tumor enhancement on contrast enhanced CT (*Yuan et al.*, 2010).

Dynamic contrast—enhanced magnetic resonance (MR) imaging and diffusion-weighted (DW) MR imaging have been investigated for assessment of early treatment response to TACE (*Mannelli et al.*, 2009).

In contrast to CT, the high concentration of iodized oil after chemoembolization does not affect MR signal intensity. Enhancing portions of the tumor are presumed to be viable, whereas non-enhancing portions are presumed to be necrotic. After gadolinium injection, assessment of tumor response is based on tumor enhancement & tumor size as in CT (Yuan et al., 2010).

The change in tumor size is based on the change in the longest diameter of the target lesion(s) in the axial plane which is the currently accepted standard in assessing treatment response in HCC (*Eisenhauer et al.*, 2009).

The disadvantage of contrast-enhanced MRI is the incapability to distinguish viable cells from reactive granulation tissue. Contrast-enhancement in granulation tissue is believed to be caused by increased capillary permeability and marked increase in the passive distribution of gadolinium. After TACE, an enhancing rim can appear on contrast-enhanced MRI. This rim can correlate to either viable tumor as well as to reactive tissue (*Yuan et al.*, 2010).

Diffusion-weighted imaging (DWI), a functional MRI technique, detects MR signal changes in tissues due to water proton motion that varies based upon the degree of cell membrane integrity. The intact membranes of viable tumor cells restrict water diffusion, whereas necrotic tumor cells with disrupted cell membranes exhibit increased water diffusion. This mobility of water is quantified by a constant known as the apparent diffusion coefficient (ADC) (*Churg et al.*, 2010).

Diffusion-weighted MRI (DWI) provides unique information related to tumor cellularity and the integrity of cell membranes and thus may be sensitive to changes in the tumor microenvironment that occur after treatment. It has been shown that hepatocellular carcinoma had a significant increase in the ADC after TACE. DWI can determine treatment response several weeks earlier than anatomical imaging, where changes in tumor size usually occur 6–12 months after treatment (*Kamel et al.*, 2009).

Aim of the work

The aim of this study is to assess the effectiveness of diffusion & Dynamic contrast enhanced MRI in imaging of hepatocellular carcinoma after transarterial chemoembolization & monitoring response to treatment.

Anatomy of the Liver

The liver is the largest organ in the body. It lies in the upper part of the abdominal cavity just beneath the diaphragm and mostly under cover of the ribs. It fills the right hypochondrium and extends across the epigastrium into the left hypochondrium. The liver is shaped like a wedge, with its base against the right abdominal wall and its tip pointing to the spleen (*Gosling et al.*, 2002).

The normal liver extends vertically from the fifth intercostal space in the right midclavicular line down to the right costal margin. It measures 12 to 15 cm in the coronal plane and 15 to 20 cm transversely. The median liver weight is 1800 gm in men and 1400 gm in women. The adult liver weight is between 1.8% and 3.1% of body weight (*Schiff et al.*, 2007).

The liver is supported in its position in the upper abdomen by several factors. Tone in the anterolateral abdominal muscles is important in holding the liver in place. Ligamentous attachments of the liver capsule to the diaphragm and anterior abdominal wall provide support, and prevent rotation of the liver (*Johnson et al.*, 2005).

Surfaces of the liver:

The liver is usually described as having superior, anterior, right or lateral, posterior and inferior surfaces. The superior, anterior and right surfaces are continuous & grouped as the diaphragmatic surface, which is mostly separated from the inferior or visceral surface, by a narrow inferior border (fig.1-1&2) (Johnson et al., 2005).