Comparative study between thrombolytic therapy and surgery in 30 cases of acute left sided prosthetic valve thrombosis

Thesis

Submitted for fulfillment of the requirement of Master Degree

in

Critical Care Medicine

Investigator Mohamed Fawzi Abdu Abdu

MB.B.CH

Supervisors

Prof. Dr. Ayman El Naggar

Professor of Critical Care Medicine
Critical Care Department
Cairo University

Dr. Mohamed Fawzi Dr. Gada Kazamel

Lecturer of Critical Care Medicine,
Critical Care Department,
Cairo University

Consultant of Cardiovascular

Medicine,

National Heart Institute,

Cairo University 2013

Acknowledgement

First of all I would like to thank **GOD** for his mercy and gifts, and for helping me to achieve this study.

All thanks to *Professor Dr. Sherif Mokhtar*, professor of critical care medicine, faculty of medicine, Cairo University for giving us the opportunity to perform such work by the construction of the most successful department at el kasr el ainy hospital.

Many thanks to *Professor Dr. Ayman El-naggar*, professor of critical care medicine and *Dr Mohammad Fawzy Abdelaleem* lecturer of critical care medicine, faculty of medicine, Cairo University and *Dr Ghada Kazamel* consultant of cardiology in NHI for their great encouragement, valuable directions and outstanding help and for their sincere supervision throughout the work of this thesis.

Mohammad Fawzy Abdu **2013**

Abestract

The study included 30 patients that were divided into two groups each of them included 15 patients. Group A received thrombolytic therapy while group B had done redo surgery. The mortality was 4 patients in thrombolytic group as compared to 2 mortality cases in the surgical group. The partial success was 2 cases in thrombolytic group. As regard the 2 pregnant in thrombolytic group they had a viable fetus as compared to 2 cases of IUFD in surgical group.

Key words: comparative study, acute left-sided prosthetic valve thrombosis, surgical redo, thrombolytic therapy

Contents

Introduction	1
Aim of The Work	5
Review of Literature	6
Patients & Methods	93
Results	101
Discussion	131
Summary	191
Conclusions	198
Recommendation	206
References	208
Arabic Summary	<u> </u>

List of abbreviations

AATS American Association for Thoracic Surgery

ABG Arterial blood gas

ACC American College of Cardiology

ACCP American College of Chest Physicians

AF Atrial fibrillation.

AHA American Heart Association

APSAC Anisoylated Plasminogen streptokinase activator

aPTT Activated partial thromboplastin time

ATS . Advancing the Standard

AVN Atrio ventricular node

CA Closing angel

Cath lab Catheterization laboratory.

CC Closing Click.

CHB Complete heart block.

CPAP Continuous positive airway pressure

CPB . Cardio pulmonary bypass

CPR . Cardio pulmonary recussitation

CVA . Cerebro Vascular Accident.

CVC Central venous catheter

Diag. Diagonal artery

DM Diastolic murmur

DVT . Deep vein thrombosis

ER Emergency room

FDA . Food and Drug Administration

GIT . Gastro intestinal tract.

GFR . Glomerular filtration rate

h hour

IMV Invasive mechanical ventilation.

I.V Intra venous

ICU Intensive care unit

INR International normalized ratio

K potassium

LAA Left atrial appendage

LA Left atrium

LAD Left anterior descending artery.

LL Lower limb

LMWH Low Molecular Weight Heparin

LV Left ventricle

MC Mitral closing sound

MRSA Methicillin resistant staph aureus.

MSSA Methicillin sensitive staph aureus

MVA Mitral Valve Area

NHI National Heart Institute.

NIMV None invasive mechanical ventilation.

NYHA New York Heart Association

OA Open angel

OC Opening Click

P2 Pulmonic component of the second heart sound

PS Pressure support

PVT Prosthetic Valve Thrombosis

PMVT Prosthetic Mitral Valve Thrombosis

RAAS Rennin angiotensin aldosterone system

RBF Renal blood flow

RRT Renal replacement therapy.

RSI Rapid sequence induction

rt- PA Recombinant tissue plasminogen activator

RV Right ventricle.

S1 First heart sound.

Second heart sound.

SC Subcutaneous.

SD Standard of deviation.

SEM Systolic ejection murmur

SK Streptokinase.

SLE Systemic lupus erythromatosis

SR Sinus rhythm

STEMI ST segment elevation myocardial infarction.

St.Jude Saint Jude (trade mark)

STS Society of Thoracic Surgeon

TEC Thrombo Embolic Complication.

TEE Trans Esophageal Echocardiography

TIA Transient ischaemic attack

TTE Trans Thoracic Echocardiography

UFH Unfractionated heparin

UK urokinase

u- PA Urokinase type- Plasminogen Activator

u unit

VF Ventricular fibrillation

VVI Single chamber pacemaker pacing and sensing the ventricle.

WHO World Health Organization.

List of Figures

Item		Page
Figure (1):	Flow patterns of mechanical valves	14
Figure (2):	Profiles of mechanical mitral valve prostheses	14
Figure (3):	A) Bileaflet valve in opening position B) Bileaflet valve in closing position.	23
Figure (4):	The relation between the dimensions of the thrombus and the rate of complications	81
Figure (5):	Flow chart showing the broad lines of our study	99
Figure (6):	The aPTT between the two groups	102
Figure (7):	The INR between the two groups	102
Figure (8):	Showing the coagulation profile history between the two groups	103
Figure (9):	Showing the redo surgeries previously done	105
Figure (10):	Showing the past history of thrombosis between the two groups	107
Figure (11):	Showing the difference in heamodynamics in the whole patients before and after treatment.	113
Figure (12):	Showing the respiratory improvement after thrombolytic therapy	115
Figure (13):	Showing the difference in renal functions between the two groups	122
Figure (14):	Showing the need for RRT in the two groups.	122
<i>Figure (15):</i>	Showing the pregnancy outcome in the two groups.	123
Figure (16):	Showing the reduction in peak gradient after thrombolytic therapy.	127

Item		Page
Figure (17):	Showing the reduction in mean gradient after thrombolytic therapy.	127
Figure (18):	Showing the reduction in PASP after thrombolytic therapy.	128
Figure (19):	Showing the increase in valve area after thrombolytic therapy.	128
Figure (20):	Showing the reduction of thrombus size measured by TEE after thrombolytic therapy.	129
Figure (21):	Showing the different patterns of acute renal failure following cardiac surgery	161
Figure (22):	Showing the final results for thrombolytic group	183

List of Tables

Item	Page
Table (1): Coated from: Recommendations for the management of patients	35
after heart valve surgery.	
Table (2): Maternal complication	43
Table (3): Fetal complication	43
Table (4): Anticoagulation from first week through 35 weeks of gestation	53
Table (5): Anticoagulation from week 36 to labor	53
Table (6): Proposed algorithm for prediction of thrombus in patients with	70
mechanical prosthetic valve dysfunction	
Table (7): Complications of thrombolytic therapy in prosthetic valves	88
Table (8): Contraindications to thrombolytic therapy	89
Table (9): Indications of thrombolytic therapy versus surgical treatment.	90
Table (10): Comparison between surgical and thrombolytic complications	91
Table (11): Showing the demographic charachteristics	100
Table (12): Showing data about the prothetic valves	101
Table (13): Showing the coagulation profile on presentation	102
Table (14): Showing the drugs used for anticoagulation	103
Table (15): Showing coagulation profile history	103
Table (16): Showing compliance to anticoagulation drugs	104
Table (17): Showing the previous redo history	104
Table (18): Showing the diseases of hypercoagulability state	105
Table (19): Showing the diseases of hypercoagulability state	106
Table (20): Showing the past history of thrombosis	106
Table (21): Showing the duration of the symptoms	107
Table (22): showing the acute embolic events on presentation	108
Table (23): Showing the presenting rhythm	108

Item	Page
Table (24): Showing the rhythm changes till the end of ICU stay	109
Table (25): Showing the rhythm changes in the whole study	110
Table (26): Showing the difference in heamodynamics and unstability between	111
the two groups.	
Table (27): Showing the hemodynamic results after treatment.	112
Table (28): Showing the difference in heamodynamics in the whole patients	113
before and after treatment.	
Table (29): Showing the differences in respiratory status between the two	114
groups.	
Table (30): Showing the respiratory improvement after thrombolytic therapy	115
Table (31): Showing the inotropic and respiratory support.	116
Table (32): Showing thrombi detection by TTE.	116
Table (33): Showing difference in LA size between the two groups.	117
Table (34): Showing difference in LV function between the two groups.	117
Table (35): Showing the difference between the two groups as regard the	117
pressures and gradients before starting treatment.	
Table (36): Showing the difference in TEE findings between the two groups.	119
Table (37): Showing the fluoroscopic assessment difference between the two	120
groups.	
Table (38): Showing the difference in infection incidence between the two	120
groups.	
Table (39): Showing the difference in renal functions between the two groups.	121
Table (40): Showing the pregnancy outcome in the two groups.	123
Table (41): Showing the mortality difference between the two groups.	123
Table (42): Showing the total ICU stay period in the two groups.	124

Item	Page
Table (43): Showing the improvement in pressures and gradients after	127
thrombolytic therapy.	
Table (44): Showing the improvement in leaflet motion in thrombolytic group	129
assessed by fluoroscopy.	
Table (45): Showing the bleeding complications in thrombolytic therapy group	130

Introduction

Rheumatic heart disease remains a major problem in developing countries. Most often valve replacement is needed in case where the native valves are not suitable for either balloon interventional procedure or surgical repair (*Reddy et al.*, 1994).

Despite the advances in the design, material, selection and manufacturing of prosthetic valves, the currently available models still are less than ideal and none of them approaches the normal human valves in either hemodynamic function or long term freedom from valve related complication (*Zeinen et al.*, 1990).

Despite the improvement in the design of the anticoagulation, thrombosis is a well-recognized complication of prosthetic heart valves and is associated with substantial morbidity and mortality, actually mechanical valve obstruction is currently the main reason of mechanical valve re-operation (*Edmunds 1987*).

In recent series, valve thrombosis was the most common prosthesis related complication found at the autopsy, which is higher in mechanical valves 23% comparing the bioprosthetic valves 11% (*Zeinen et al.*, 1990).

Prosthetic valve thrombosis is a life threatening complication with dramatic clinical presentation and rapid deterioration. The outcome is mostly fatal without intervention. However, the emergency operation with either valve replacement or thrombectomy with debridement was

Introduction

considered the treatment of choice for acute prosthetic valve thrombosis, unfortunately, the operation in this situation associated with high mortality, which is ranging from 8 - 20 percent for urgent cases to 37.5%-54.5% for emergency cases (*Husbye et al.*, 1983).

Thrombolytic Therapy:

Hence the pathogenesis of acute thrombosis in acute myocardial infarction and pulmonary embolism is the same of valve thrombosis, thrombolytic therapy was used as another modality in the treatment of stuck valves, which was initiated by Luluanga at 1971, when he used streptokinase in the treatment of tricuspid valve thrombosis (*Luluanga et al.*, 1971).

Three years later Baille and his colleagues used thrombolytic therapy in the treatment of left sided stuck valves (*Baille et al.*, 1974), since this time tell know, thrombolytic therapy was used in management of stuck valves with different success rate (*Agaewal et al.*, 1997).

Despite the agreement about thrombolytic safety in the treatment of prosthetic valve thrombosis, no special regimen is recommended and the percentage of re-thrombosis still undefined (*Yaron et al., 2000*).

Prosthetic valve thrombosis is the most common prosthetic related complication found at the autopsy, which is higher in mechanical valves (23%) comparing the bioporthetic valves (11%) (*Zeinen et al.*, 1994).

Prosthetic valve thrombosis is a life threatening complication with a dramatic clinical presentation and rapid deterioration, the outcome is mostly fatal without intervention (*Reddy et al, 1994*).

Introduction

Inadequate level of anticoagulation is the most important factor involved in the pathogenesis of prosthetic valve thrombosis, adding to it many other factors including, the site and type of the prosthesis, the hypercoagulable state, the cardiac morphology and function (*Hering et al.*, 2001).

Surgical treatment with either valve replacement or thrombectomy with debridement was considered the treatment of choice for acute prosthetic valve thrombosis, however, operation in this situation is technically demanding, with 37% to 55% mortality risk in emergency situation (*Deviri et al.*, 1991).

Because the pathogenesis of acute thrombosis in acute myocardial infarction and pulmonary embolism is the same of valve thrombosis, thrombolytic therapy was tried as another modality in the treatment of stuck valves, which was initiated by Luluanga at 1971, when he used streptokinase in the treatment of tricuspid valve thrombosis (*Luluanga et al, 1971*).

Thrombolytic therapy has been accepted for routine treatment of tricuspid valve prosthetic occlusions, the concern for potential risk of systemic embolization has limited its use in left sided prosthetic valve thrombotic occlusion (*Roudaut et al, 1992*).

Thrombolytic therapy has been tried in acute left-sided prosthetic valve thrombosis as an alternative to emergency operation in case of critical clinical presentation, and when surgery is contraindicated (*Witchitz et al, 1980*). After that, thrombolytic therapy started to have an