EFFECT OF ULTRAVIOLET RADIATION ON ENZYME ACTIVITIES OF EXPERIMENTAL ANIMALS TREATED WITH ANTIOXIDANTS

By

MOHAMED MOHAMED ABDEL HADY ABDEL FATTAH OMER

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Agricultural Biochemistry)

Department of Agricultural Biochemistry Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF ULTRAVIOLET RADIATION ON ENZYME ACTIVITIES OF EXPERIMENTAL ANIMALS TREATED WITH ANTIOXIDANTS

By

MOHAMED MOHAMED ABDEL HADY ABDEL FATTAH OMER

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2003
This thesis for M.Sc. degree has been approved by:
Prof. Dr. Salah Abdel - Aziz Ahmed Turk
Prof. Emeritus of Biochemistry, Faculty of Agriculture, Minia University
Prof. Dr. Mostafa Ibrahim Sarwat Ahmed
Prof. of Biochemistry, Faculty of Agriculture, Ain Shams University
Prof. Dr. Safwat Hassan Ali
Prof. of Biochemistry, Faculty of Agriculture, Ain Shams University
Prof. Dr. Salwa Ahmed Eid
Prof. Emeritus of Biochemistry, Faculty of Agriculture, Air Shams University

Date of Examination: 22 / 10 / 2009

EFFECT OF ULTRAVIOLET RADIATION ON ENZYME ACTIVITIES OF EXPERIMENTAL ANIMALS TREATED WITH ANTIOXIDANTS

By

MOHAMED MOHAMED ABDEL HADY ABDEL FATTAH OMER

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2003

Under the supervision of:

Prof. Dr. Salwa Ahmed Eid

Prof. Emeritus of Biochemistry, Department of Biochemistry, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Fikry Wassef Shehata

Prof. Emeritus of Biochemistry, Department of Biochemistry, Faculty of Agriculture, Ain Shams University

Prof. Dr. Safwat Hassan Ali

Prof. of Biochemistry, Department of Biochemistry, Faculty of Agriculture, Ain Shams University

تأثير الأشعة فوق البنفسجية على النشاط الإنزيمي في حيوانات الأسدة التجارب المعاملة بمضادات الأكسدة

رسالة مقدمة من

محمد محمد عبد الهادى عبدالفتاح عمر

بكالوريوس علوم زراعية (كيمياء حيوية زراعية)، جامعة عين شمس، 2003

للحصول على درجة الماجستير في العلوم الزراعية (كيمياء حيوية زراعية)

> قسم الكيمياء الحيوية الزراعية كلية الزراعة جامعة عين شمس

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالب : محمد محمد عبد الهادى عبد الفتاح عمر

عنوان الرسالة : تأثير الأشعة فوق البنفسجية على النشاط الإنزيمي

في حيوانات التجارب المعاملة بمضادات الأكسدة

اسم الدرجة : ماجستير في العلوم الزراعية (كيمياء حيوية

زراعية)

لجنة الإشراف:

أ.د. سلوى أحمد عيد

أستاذ الكيمياء الحيوية الزراعية المتفرغ، قسم الكيمياء الحيوية الزراعية، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

أ.د. فكرى واصف شحاتة

أستاذ الكيمياء الحيوية الزراعية المتفرغ، قسم الكيمياء الحيوية الزراعية، كلية الزراعة، جامعة عين شمس

أ.د. صفوت حسن على

أستاذ الكيمياء الحيوية الزراعية، قسم الكيمياء الحيوية الزراعية، كلية الزراعة، جامعة عين شمس

تاريخ البحث: 6 / 9 /2004

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 200 / 20 / 20 موافقة مجلس الكلية موافقة مجلس الكلية أجيزت الرسالة بتاريخ عن المحاسلة موافقة مجلس الكلية المحاسلة عن المحاسلة عن

2009 / / 2009 / /

صفحة الموافقة على الرسالة تأثير الأشعة فوق البنفسجية على النشاط الإنزيمي في حيوانات الأشعة التجارب المعاملة بمضادات الأكسدة

ر سالة مقدمة من

محمد محمد عبد الهادى عبدالفتاح عمر

بكالوريوس علوم زراعية (كيمياء حيوية زراعية)، جامعة عين شمس، 2003

للحصول على درجة الماجستير في العلوم الزراعية (كيمياء حيوية زراعية)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

أ.د. صلاح عبد العزيز أحمد ترك	•••••
أستاذ الكيمياء الحيوية الزراعية المتفرغ ، كلية الزراعة ، جامعة	یا
أ.د. مصطفى إبراهيم تروت أحمد	•••••
أستاذ الكيمياء الحيوية الزراعية ، كلية الزراعة ، جامعة عين شم	
أ.د. صفوت حسن على	•••••
أستاذ الكيمياء الحيوية الزراعية ، كلية الزراعة ، جامعة عين شه	
أ.د. سلوى أحمد عيد	•••••
أستاذ الكيمياء الحيوبة الزر اعية المتفرغ ، كلية الزر اعة ، جامعة	َى شمس

تاريخ المناقشة: 22 / 10 / 2009

ACKNOWLEDGEMENT

In the name of **Allah**, most gracious, most merciful. All praise and glory to **GOD** the almighty who alone made this small object to be accomplished.

I would like to express my profound gratitude and sincere appreciation to **Prof. Dr. Salwa Ahmed Eid** Prof. of Biochemistry, Department of Biochemistry, Faculty of Agriculture, Ain Shams University, for her generous supervision, valuable guidance and her kind encouragements for me during the present investigation.

Gratefulness and thanks to express my deep gratitude and sincere appreciation to **Prof. Dr. Fikry Wassef Shehata**, Prof. of Biochemistry, Department of Biochemistry, Faculty of Agriculture, Ain Shams University, for his supervision, guidance, continuous support in the course of this investigation and help during every steps of thesis.

Sincere thanks and deepest gratitude to **Prof. Dr. Safwat Hassan Ali**, Prof. of Biochemistry, Department of Biochemistry,
Faculty of Agriculture, Ain Shams University, for his valuable supervision, guidance, keen interest, time, effort and every possible help he kindly offered during the whole period of this investigation and writing this manuscript.

I wish to express my heartfelt gratitude to my family for their encouragements, constant prayers and continuing support.

Finally, I would like to express my gratitude for all staff members of Biochemistry Department for their helpful during this work.

ABSTRACT

Mohamed Mohamed Abdel Hady Abdel Fattah Omer: Effect of Ultraviolet Radiation on Enzyme Activities of Experimental Animals Treated with Antioxidants. Unpublished M.Sc. Dissertation, Department of Biochemistry, Faculty of Agriculture, Ain Shams University, 2009.

The present study was designed to investigate the protective effect of vitamin E and/or selenium administration against UVAinduced oxidative stress through the estimation of various parameters i.e. blood reduced glutathione (GSH), lipid peroxidation expressed as malondialdehyde (MDA), plasma thiols (R-SH), peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT). Not only that, but also, the changes that may be occur in some blood parameters such as triacylglycerol, total cholesterol, HDL-C, LDL-C, total proteins and albumin as well as liver functions such as GPT and GOT were taken as a criteria for evaluating the altered tissue function induced by exposure to UV radiation. For this purpose, rats were divided into eight groups, receiving vitamin E and/or selenium (Se) with or without ultraviolet irradiation. The UV groups every day were irradiated for 4 h with UVA light for 80 days. Groups of rats treated with vitamin E (as α-tocopheryl acetate) and selenium (as sodium selenite) were injected intraperitoneally before exposure to UV rays. Blood was taken after 20, 40, 60 and 80 days post-treatment. Results and data showed a significant decline was observed in all the mean values of GSH level, plasma thiols, HDL-C and albumin besides, the mean activity values of erythrocytes superoxide dismutase, blood catalase and glutathione peroxidase in groups of ultraviolet-irradiated rats compared with the control (non-irradiated) rats group. In addition, the mean values of GOT and GPT, as well as plasma MDA, total cholesterol, LDL-C and triglycerides were significantly elevated in ultraviolet-irradiated rats compared with the corresponding values of the normal control rat group. The study suggested that, pretreatment with antioxidants was found to be effective as protective agents from radiation-induced alterations in all the tested parameters. On other words pretreatments with antioxidant maybe have some beneficial effects against UV-induced injury.

Key words:

Vitamin E, selenium, UVA, lipid peroxidation, reduced glutathione, glutathione peroxidase, superoxide dismutase, catalase, rats, blood and plasma parameters.

CONTENTS

	page
LIST OF TABLES	iv
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS AND ACRONYMS	viii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Solar radiation and ultraviolet penetration	4
2.2. Ultraviolet hazards	5
2.3. UV-induced ROS formation	6
2.4. DNA damage caused by UV radiation and ROS	10
2.5. UV-induced photoimmunosuppression	11
2.6. UV-induced biomolecules damage	12
2.7. UV-induced lipid peroxidation	14
2.8. UV-induced depletion of RSH-groups	17
2.9. Antioxidant defense systems	18
2.9.1. Enzymatic antioxidant systems	19
2.9.1.1. Superoxide dismutase	19
2.9.1.2. Catalase	20
2.9.1.3. Glutathione peroxidase	20
2.9.2. Non-enzymatic antioxidant systems	22
2.9.2.1. Glutathione	22
2.9.2.2. α-Tocopherol	22
2.9.2.3. Selenium	22
2.10. Effect of ROS on antioxidant enzymes	23
2.11. UV effects on antioxidant systems	24
2.12. Antioxidant defense systems against UV radiation	28
2.12.1. Protective role of superoxide dismutase	28
2.12.2. Protective role of catalase	29
2.12.3 Protective role of glutathione peroxidase	30

	2.12.4. Protective role of reduced glutathione	32
	2.12.5. Protective role of α-Tocopherol (α-TOC)	33
	2.12.6. Protective role of selenium	34
	2.13. Concluding remarks	35
3	. MATERIALS AND METHODS	36
	3.1. Experimental animals	36
	3.2. Ultraviolet irradiation	36
	3.3. Antioxidants	36
	3.4. Experimental design	37
	3.5. Collection of blood samples	37
	3.6. Body weight	38
	3.7. Organs weight	38
	3.8. Determination of antioxidants markers	38
	3.8.1. Glutathione (GSH)	38
	3.8.2. Lipid peroxidation	39
	3.8.3. Catalase (CAT) activity	40
	3.8.4. Glutathione peroxidase activity	40
	3.8.5. Superoxide dismutase (SOD) activity	41
	3.8.6. Plasma thiols	42
	3.9. Determination of plasma albumin	43
	3.10. Determination of plasma total protein concentration	43
	3.11. Determination of plasma aminotransferases activity	44
	(ALT/GPT) & (AST/GOT)	77
	3.12. Measurment of plasma lipid profile	45
	3.12.1. Plasma triglycerides	45
	3.12.2. Determination of plasma total cholesterol	46
	3.12.3. Plasma high density lipoprotein-cholesterol (HDL-C)	46
	3.12.4. Plasma low density lipoprotein-cholesterol (LDL-C)	47
	3.13. Determination of hemoglobin	47
	3.14. Statistical analysis	48
4	. RESULTS AND DISCUSSION	49

4.1. Blood reduced glutathione	49
4.2. Plasma malondialdehyde	52
4.3. Blood catalase	56
4.4. Blood glutathione peroxidase	59
4.5. Superoxide dismutase	63
4.6. Plasma R-SH groups	66
4.7. Plasma albumin	69
4.8. Plasma total protein	72
4.9. Liver fuction parameters	75
4.9.1. Aspartate aminotransferase (AST/GOT)	75
4.9.2. Alanine aminotransferase (ALT/GPT)	78
4.10. Lipid profile	82
4.10.1. Plasma triglycerides	82
4.10.2. Plasma total cholesterol	83
4.10.3. Plasma LDL-C and HDL-C	89
4.11. Blood hemoglobin	94
4.12. Body and organs weights in tested animals	97
5. SUMMARY	101
6. REFERENCES	105
ARABIC SUMMARY	

LIST OF ABBREVIATIONS AND ACRONYMS

% Per cent

 $^{1}O_{2}$ Singlet oxygen $^{3}O_{2}$ Triplet oxygen ^{3}S Triplet sensitizer

8-OHdG 8-hydroxydeoxyguanosine
a.m. ante meridiem, before noon
ALT Alanine aminotransferase

ANOVA Analysis of variance

AST Aspartate aminotransferase ATP Adenosine Triphosphate

C Control
CAT Catalase
Co. Company

COX Cyclooxygenase

DNA Deoxyribonucleic acid

DTNB 5,5-dithiobis- (2-nitrobenzoic acid) *e.g.* exampli gratia (Latin), for example

Ed Edition

EDTA Ethylenediaminetetraacetic acid

et ali (Latin), and others

etc et cetera (Latin), and so forthex vivo (Latin), out of or from lifeFAD Flavin Adenine Dinucleotide

Fig. Figure g Gram

G-6-P-D Glucose-6-Phosphate Dehydrogenase GOT Glutamate Oxaloacetate Transaminase

GPT Glutamate Pyruvate Transaminase

GR GSH-reductase