Perioperative Anesthetic Considerations for Surgical and Non Surgical Management of Tracheal Stenosis

Essay

Submitted for Partial Fulfillment of the Master Degree in Anesthesiology

Wessam El-Said Mohamed Metwally

M.B., B.Ch. Faculty of Medicine, Ain Shams University

Under supervision of

Dr. Ayman Mokhtar Kamaly

Professor of Anesthesiology, Intensive Care & Algology Faculty of Medicine, Ain Shams University

Dr. Ayman Ahmed Abdellatif

Assistant Professor of Anesthesiology, Intensive Care & Algology Faculty of Medicine, Ain Shams University

Dr. Hany Victor Zaki

Lecturer of Anesthesiology, Intensive Care & Algology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

<u>ڹؿٚؠٚٳؖڛؙٲٳڿڿۯ۬ٳڷڿؽێؽ</u>

وقُلِ اعْمَلُوا فَسَيرَى اللهُ عَمَلَكُمْ وقُلِ اعْمَلُوا فَسَيرَى اللهُ عَمَلَكُمْ ورَسُولُهُ والْمُؤْمِثُونَ

صدق الله العظيم

سورة التوبة آية (105)

Acknowledgements

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Dr. Ayman Mokhtar Kamaly**, Professor of Anesthesiology, Intensive Care and Algology, Faculty of Medicine, Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr. Ayman Ahmed Abdellatif**, Assistant Professor of Anesthesiology, Intensive Care & Algology, Faculty of Medicine, Ain Shams University for adding a lot to this work by his experience and for his keen supervision.

I am also thankful to **Dr. Hany Victor Zaki**, Lecturer of Anesthesiology, Intensive Care and Algology, Faculty of Medicine, Ain Shams University for his valuable supervision, co-operation and direction that extended throughout this work.

Wessam El-Said Mohamed Metwally

List of Contents

					F	Page
List of Al	bbre	viation	s		•••••	i
List of Fi	gure	s			• • • • • • • • • • • • • • • • • • • •	iii
						V
						1
				•••••		3
			1.701			
				siology of the		4
				l		4
	-			•••••		5
I.		-		a		5
II.				a		9
III.	His	tology	of the trache	eobronchial tree		10
IV.				natic drainage .		12
V.	Ner	ve supp	oly of the tra	achea		14
C) Physic	olog	y of th	e tracheob	ronchial tree	•••••	16
D) Physic	cs of	airflo	w	•••••	•••••	17
I.						17
II.				low dynamics		20
Chapter	2: E	Epiden	niology &	Pathophysiol	logy of Trac	heal
	S	tenosi	s:			
A) Incid	denc	e of tr	acheal stei	osis	•••••	22
B) Etio	logy	of tra	cheal stend	osis	•••••	22
I.				tracheal stenos		23
II.	Et	tiology	of adult trac	cheal stenosis		29
C) Path	oph	ysiolog	gy of trach	eal stenosis .	•••••	31
D) Clas	sific	ations	of trachea	l stenosis	•••••	34
Chapter	3:	Non	Surgical	Managemei	nt of Trac	heal
Stenosis:			0	8		
A) Diag	nosi	s of tr	acheal stei	10sis	•••••	39
I.						39
II	Ρŀ	nysical	examination	า		40

III.	Investigations	40
B) Mana	agement of tracheal stenosis	49
Í.	Initial stabilization	49
II.	Conservative management	49
III.	Airway intervention	50
• Non	surgical management of tracheal stenosis	
I.	Patient selection for non surgical management of	
	tracheal stenosis	51
II.	Different approaches for non surgical management	
	of tracheal stenosis	52
III.	Anesthetic considerations for bronchoscopy	60
Chapter 4	: Surgical Management of Tracheal Stenosis:	
	fferent approaches for surgical management o	\mathbf{f}
tra	acheal stenosis	67
B) Aı	nesthetic considerations for tracheal resection	&
re	construction	68
I.	Patient selection and preoperative assessment	68
II.		. 70
III.	· · · · · · · · · · · · · · · · · · ·	71
IV.		71
V.	Induction of anesthesia	. 72
VI.	Intraoperative management & Ventilation Method	ds 73
VII.	Emergence and extubation	. 82
Chapter 5	: Postoperative Follow up & Complications:	
A) Pos	toperative considerations	85
I.	Postoperative care	85
II.	Postoperative airway management	86
III.	Postoperative pain management	86
IV.	Postoperative follow-up	87
•	nplications	87
C) Fut	ure of tracheal stenosis management	91
Summarv	in English	95
References		
	in Arabic	97

List of Abbreviations

2-D : Two-dimensional3-D : Three-dimensionalABG : Arterial blood gas

APC : Argon plasma coagulation

ASA : American society of anesthesiologists

CAO : Central airway obstruction

COPD : Chronic obstructive pulmonary diseaseCPAP : Continuous positive airway pressure

CPB : Cardiopumonary bypassCT : Computed topography

dmnX : Dorsal motor nucleus of vagus

EA : Esophageal atresiaECG : Electrocardiohraphy

ECO2 : End tidal carbon dioxide

EES : Everolimus

ETT : Endotracheal tube

EXIT : Ex-utero Intrapartum Treatment

FEF : Forced expiratory flow

FEV1 : Forced expiratory volume 1st second

FIF : Forced inspiratory flow Fio2 : Fraction of inspied oxygen

FVC : Forced vital capacity

HFJV : High frequency jet ventilation

HFOV : High frequency oscillation ventilation

HFPPV: High frequency positive pressure ventilation

HFV : High frequency ventilation

ICU : Intensive care unit

IPPV : Intermittent positive pressure ventilation

LMAs : Laryngeal mask airways

List of Abbreviations (Cont.)

LTS : Laryngeotracheal stenosis
MRI : Magnetic resonance imaging

mTOR : Mammalian target of rapamycin

nA : Nucleus ambigus

Nd:YAG: Neodymium-Yttrium-Aluminum-Garnet

NMB : Neuromuscular blockade

NO : Nitric oxide

nTS : Nucleus tractus solitarius

O2 : Oxygen

PEEP : Positive end expiratory pressure

PES : Paclitaxel

RD : Respiratory diverticulum

SES : Sirolimus

TCI : Target control infusion

TIVA : Total intravenous anesthesia

V/Q : Ventilation/perfusionVB : Virtual bronchoscopy

VIP : Vasoactive intestinal peptide

VT : Tidal volumeZES : Zotarolimus

List of Figures

Fig.	Title	Page
1	Successive stages in the development of the	4
	respiratory diverticulum from the primitive	
	foregut.	
2	The trachea and mainstem, lobar, and segmental	8
	bronchi.	
3	Transverse section of the trachea.	11
4	Blood supply of the larynx and cervical trachea.	12
5	Schematic view of the tracheal microscopical	13
	blood supply.	
6	Diagram of the airway generations in the human	17
	adult lung.	
7	Flow types: The three basic types of flow are	18
	laminar, turbulent and transitional.	
8	Diagram showing relationship between	21
	crosssectional area and generation of the airway.	
9	Classification of congenital tracheal stenosis.	25
10	The anomalous left pulmonary artery (LPA) is	29
	seen arising from the right pulmonary artery	
	(RPA) and coursing between the esophagus and	
	the trachea.	
	Ulceration and necrosis of the tracheal wall.	32
12	Schematic representations of the basic types of	37
	stenosis.	
13	Clinical examples of the degrees of stenosis.	38
14	A 14 year-old male patient with tracheal	43
	stenosis.	
15	Improved detection of focal tracheal stenosis	43
	using 3-D external rendering of CT data.	
16	Efer-Dumon rigid bronchoscope with external	45
	port for ventilation, free moving telescope with	
	an attached c-mount for video and external side	
	port for suction catheter and laser fiber.	

List of Figures (Cont.)

Fig.	Title	Page
17	Flow-volume loops.	46
18	Effect of dynamic extrathoracic airway	48
	obstruction.	
19	Effects of dynamic intrathoracic airway	48
	obstruction.	
20	Algorithm for multidisciplinary approach for	50
	management of tracheal stenosis	
21	Flexible bronchoscopic ballon dilatation	53
22	Different types of silicone air way stents	56
23	Bronchoscopic picture, immediately after stent	57
	insertion (Dumon silicone stent)	
24	Juvenile papillomatosis of the glottic and	58
	subglottic region in a 16-year-old boy is seen	
	before (left panel) and after (right panel)	
	treatment with argon plasma coagulation	
25	High frequency jet ventilation	64
26	Procedure for resection of high tracheal lesion	74
27	Procedure for resection of lower tracheal lesions	76
28	Procedure for resection of carinal lesions	76
29	The airway management of a lower tracheal	77
	resection	
30	Sentinel stitch between the chin and sternon	83
31	Sentinel stitch can be avoided using this or	83
	thesis (orthopedic corset individually designed	
	and custom made) for cervical flexion	
32	(a): Plain X-ray showing a stent place (b) CT	87
	scan showing the stent in place	
33	Stepwise approach for a bioengineered airway to	94
	replace a defective bronchus	

List of Tables

Table	Title	Page
1	Dimensions of the growing trachea related to age.	7
	Tracheal length is from vocal cords to carina.	
2	Classification of congenital tracheal stenosis	26
	according to clinical status and endoscopic	
	findings.	
3	Myer-Cotton grading system for laryngeotracheal	35
	stenosis.	
4	Types of airway stenosis.	36
5	Numerical assignment of degree of airway stenosis.	37
6	Scoring system according to the location.	37
	storing system according to the rotation.	
7	Complications of HFJV.	80

Introduction

Tracheal stenosis is a potentially life-threatening condition. Tracheostomy and endotracheal intubation remain commonest causes of benign stenosis, improvements in design and management of tubes. Posttracheostomy stenosis is more frequently encountered due to earlier performance of tracheostomy in the intensive care units, while the incidence of post-intubation stenosis has decreased of high-volume, with application low-pressure cuffs (Tsakiridis et al., 2012).

Tracheal stenosis can present very insidiously or as a catastrophic near death episode requiring cardiopulmonary resuscitation. In many cases the condition is precipitated by an acute respiratory infection. Worsening of dysnea following recumbency may also result, dysnea on exertion appears when 50% of the airway is stenosed, dysnea at rest occurs when 75% of the airway is stenosed. Typically, in adults, exertional dysnea occurs when the airway diameter is reduced to about 8mm, resting dysnea occurs at a diameter of 5mm, at which stridor also occurs (*Wong et al., 2010*).

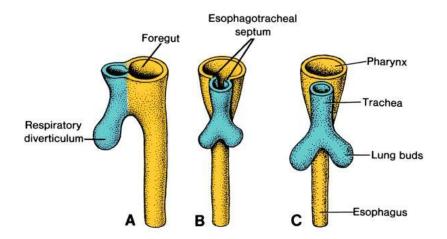
Therapeutic options for tracheal stenosis include tracheal resection and reconstruction, laser reconstruction, electrocautery excision of the tissue, tracheal dilatation and stenting. Tracheal dilatation and stenting is a relatively new procedure for the treatment of tracheal stenosis. Currently, stents are only licensed for malignant conditions, because the incidence of stent erosion or malfunction is probably a function of time (*Juvekar et al.*, 2003).

Anesthesia for tracheal resection is one of the most challenging aspects of anesthesia practice because of the unique conditions associated with narrowed airway diameter and the problem of maintaining ventilation during induction,

☐ Introduction and Aim of The Work

bronchoscopy, and the period of tracheal resection and reconstruction (*Lee et al.*, 2006).

Tracheal stenosis is a demanding task for both patient and doctors, it is not without complications, which may be immediate like inflammatory edema at the site of anastomosis, respiratory distress by laryngeal paralysis, surgical and mediastinal emphysema, early like swallowing disorder and late complications like restenosis (*Abbasidezfouli et al.*, 2007).


Aim of the Work

This study was conducted to study tracheal stenosis with all its causes and types, and to review and analyze anesthetic considerations for the different methods of management, as well as to review postoperative care.

Chapter (1) Anatomy and Physiology of the Trachea

A) Embryology of the trachea:

The development of the trachea begins between the 3rd and 4th gestational weeks. The respiratory system forms as a ventral diverticulum, called respiratory diverticulum (RD), from the caudal part of the foregut. A tracheoesophageal septum develops at the site where the longitudinal tracheoesophageal folds fuse together. This septum divides the foregut into a ventral portion "the laryngotracheal tube" and a dorsal portion "the esophagus" (**Fig.1**). The laryngotracheal tube and surrounding splanchnic mesenchyme give origin to the larynx, the trachea, the bronchi, and the lungs. The proximal end of the laryngotracheal tube opens into the pharynx near the level of the last pharyngeal arch forming the glottis, the midportion will develop into the trachea whereas the distal end will bifurcate to form the lung buds (**Phipps** *et al.*, **2006**).

Figure (1) Successive stages in the development of the respiratory diverticulum from the primitive foregut. **A:** At the end of the 3rd week. **B** and **C:** During the 4th week (**Phipps** *et al.*, 2006).

The endoderm of the pouch will develop into the tracheal epithelium whereas the surrounding splanchnic mesenchyme starts to form the cartilaginous rings between weeks 8 and 10. Cartilage growth occurs by remodeling and proceeds cranio caudally so that the trachea is initially funnel-shaped being wider at the laryngeal level (Carlson, 1996).

Different tracheal anomalies can be traced along specific timelines. Abnormalities in the 4th gestational week would affect the initial separation of the foregut and lung buds. This would result in severe anomalies associated with cardiac and skeletal malformations. Failure of formation of the laryngeotracheal groove during the 6th gestational week will result in different degree of clefts and tracheo-esophageal fistulae. Disturbances during the 8th and 10th weeks will result in abnormalities in tracheal cartilage development resulting in various degrees of stenosis and complete rings but with fewer associated anomalies (**Phipps** *et al.*, **2006**).

B) Anatomy of the trachea:

I. Anatomy of the trachea

The Trachea is flexible yet rigid tube which has the difficult task moving, twisting and bending without any possibility of narrowing or occlusion. It travels through different tissues and external pressures and yet has to have a smooth humid lining with effective protective mechanisms. It is fixed at both extremities and has to comply with neck movement, chest pressures and posterior changes induced by esophageal motions or moving boluses. It has protective mechanisms in case its main protector, the larynx, fails (Allen, 2003).

The trachea starts in the neck at the cricotracheal ligament at the level of C6 or the intervertebral disc C6-C7 in adults. It ends in the chest. The carina is usually at the level of