ENVIRONMENTAL MITIGATION OF SEDIMENT ACCUMULATIONS AT DRINKING WATER STATIONS INTAKE IN EGYPT

By

Gamal Mohamed Aly AbdElAziz

B.Sc of Mechanical Power, Faculty of Engineering,
Menofia University, 1985

M. Sc. Of Environmental Engineering, Institute of Environmental Studies
and Researches, Ain Shams University, 2007

A thesis Submitted for the Partial Fulfillment
Of
The Requirements for the Doctor of Philosophy Degree
In
Environmental Science

Department of Engineering Science Institute of Environmental Studies and Researches Ain shams University

APPROVAL SHEET

ENVIRONMENTAL MITIGATION OF SEDIMENT ACCUMULATIONS AT DRINKING WATER STATIONS INTAKE IN EGYPT

By

Gamal Mohamed Aly AbdElAziz

B.Sc of Mechanical Power, Faculty of Engineering,
Menofia University 1985
M. Sc. Of Environmental Engineering, Institute of Environmental Studies
and Researches, Ain Shams University 2007

This thesis towards a Doctor of philosophy Degree in environmental Science has been approved by:

(1) Prof. Dr.: Mohamed.M Nour Eldin Ewais.

Prof., of Irrigation and Hydraulic, Faculty of Engineering,
Ain Shams University, Cairo, Egypt
(2) Prof. Dr.: Gamal Abdel Nasser K. Saber

Prof., of Soil Science And Water National Water Research Center,
Cairo, Egypt
(3) Prof. Dr.: Mohamed A.El-Samanoudy.

Prof., of Mechanical Power Engineering, Faculty of Engineering,
Ain Shams University, Cairo, Egypt
(4) Prof.Dr. Noha Samir Donia.

Prof., of Environmental Engineering, Institute of Environmental Studies and
Researches, Ain Shams University Cairo, Egypt

ENVIRONMENTAL MITIGATION OF SEDIMENT ACCUMULATIONS AT DRINKING WATER STATIONS INTAKE IN EGYPT

By

Gamal Mohamed Aly AbdElAziz

B.Sc of Mechanical Power, Faculty of Engineering,
Menofia University, 1985
M. Sc. Of Environmental Engineering, Institute Of Environmental Studies and Researches, Ain
Shams University 2007

A thesis Submitted in Partial Fulfillment

Of

The Requirements for the Doctor of philosophy Degree

In

Environmental Science

Department of Engineering Science

Under the supervision of:

(1) Prof. Dr.: Mohamed A.El-Samanoudy
Prof., of Mechanical Power Engineering, Faculty of Engineering,
Ain Shams University, Cairo, Egypt
(2) Prof.Dr. Noha Samir Donia
Prof., of Environmental Engineering, Institute of Environmental Studies and Research, Cairo, Egypt
(3) Prof.Dr. Mohamed Adeal Aly Younes
Prof., Director of Mechanical and Electrical Research Institute,
National Water Research Center, Cairo, Egypt
(4) Dr. Magdy Gad El-Rab Samoueal
Associate Prof, Nile Research Institute National Water Research Center,
Cairo, Egypt

2014

ACKNOWLEDGEMENTS

First of all thanks to **Allah** without whom it could not be possible to complete this study.

I wish to express my thanks and gratitude to all those who generously gave their support, review and assistance to carry out this work.

Sincere gratitude and appreciation to my advisor, **Prof.Dr.M.A.El-Samnoudy**, for his guidance this study, my deep and special acknowledgments to **Dr.N. S. Donia** for here patience devotion.

Special thanks to **Prof. Dr. M. A. Younes** director (**MERI**, **NWRC**), for their help. my sincere gratitude also extended to **Dr.M. G. El-Rab** for his guidance. thanks and acknowledgements my director **Prof. Dr. M. S. Aziz**, director of nri for his help and advice, my sincere gratitude also extended to **Dr.M. Darwish** assoc. Prof and so on **Dr.M. S. Abdelnaby**, researcher at NRI for their advice.

Finally, I would like to thank my wife, my sons and my daughter for their patience, during completing this study.

ABSTRACT

The Egyptian government has paid a lot of attention to mitigate the effect of sedimentation at drinking water intakes on River Nile. One of the main problems of the drinking water stations is blockage of intakes, which need to make either hydraulic or mechanical dredging in the entrance area around the drag pipe with high cost; where the sedimentation problems are relatively common in Egypt, especially in the case of drinking water station intakes on River Nile. Excessive sedimentation at water intakes on rivers causes interruption in water supply and serious abrasion of pumps with consequent high operating costs. Sedimentation in the catchment area around the intake mouth causes a lot of problems such as reducing the amount of drawing water and decreasing the station efficiency. There is a need for the removal of sediment from the intakes to ensure water supply and to protect the pumps against damage and sediment clogging, respectively. the objective of this research is to develop a reliable and simple device; that has the capabilities of removing the accumulated sediment at front of water intakes early without causing blockage and to ensure supplying water continuously it can be fabricated from local materials and components with low cost.

Finally, the new device is the best solution to remove sediment and applied at the drinking water station intakes which suffer from the sedimentation at the intakes and can utilize the removed sediment in many useful fields. It can be concluded that the use of this technique is recommended because it is the cleanest and cheapest source of energy in removing sediment from front of drinking water station intakes.

SUMMRY

The construction of the Aswan High Dam (AHD) and a storage reservoir on the River Nile caused an imbalance of sediment discharges downstream of the dam. The river between Aswan and delta barrages is divided into four reaches by a series of barrages (Isna, Nag Hammadi, Assuit and delta). The regime of sediment transport was changed significantly in the reaches upstream of the barrages.

Excessive sedimentation at water intakes on rivers causes interruption in water supply and may damage of pumps with consequent high operating costs. The problems of sedimentation at drinking water station intakes on rivers could be minimized by applying a new technique that can be added within the components of drinking water station intakes. Sedimentation problems are relatively common along the River Nile. The water intakes located on the River Nile had experienced chronic problems with bed sediment buildup. The sediment, comprising a mix of silt and sand, hindered the operation of the intake's pumps. Partial blockage by sediment restricts water flow through the system's tubes. elevating turbine backpressure, and reduces the station's efficiency. it is required to remove sediment accumulated within the intake, and dredge the river bed in the vicinity of the intake periodically, at the water intakes located along the River Nile' banks which are prone to sedimentation problems, there is a need to remove sediment from the intakes to ensure continuous water supply from these intakes, and to protect the pumps against damage and sediment clogging.

This research studies the environmental impact as a result of accumulated sediment in front of water intakes, because of the dredging

process in front of these stations. For example, this can be affected on the flora, fauna, river navigation, fisheries, and water quality.

The study aims to find a technical solution suitable for using to reduce the negative impact of sediment problem in front of water intakes on River Nile, in order to improve operating efficiency. So the suggested new technology can be added within the components of water intakes that suffer from the sediment problem to overcome this problem.

Thesis components:

This study includes seven chapters as follow:

<u>Chapter (1)</u>: (Introduction)

This chapter introduces the main items of this research and gives a general idea about it. The main target of this research is to mitigate the contaminated sediment at front of water intakes along River Nile. Furthermore, this chapter explains the main objectives of the research and study plan and research components.

<u>Chapter (2)</u>: (Literature Review)

This chapter presents the literature review about the research topic. It introduces the main types of dredge equipment's and procedures that are commonly used in the world. Also, it discusses the limitations of the different types of dredging equipment. It explains why sediments are suspended during dredging operations and the environmental impacts of this phenomenon.

Chapter (3): (Environmental Impacts of Traditional Dredging Methods)

In recent years, the ecological impacts associated with the presence of contaminated sediments in front of water intakes have forced the local authorities to solve the problem. Planners and engineers responsible for designing strategies to overcome such contaminated sites have a limited number of options to choose. This section reviews the environmental impacts of traditional dredging methods. Also, it presents the environmental effects of the silt accumulated in front of the water intakes, and the environmental effects of the different ways of removing this sediment.

<u>Chapter (4)</u>: (Methodology)

This section presents in detail the proposed device. It explains the main steps, for example device components that have been installed, the proposed location for installing this device, and how to operate this device.

Chapter (5): (Experimental Works)

This chapter explains in detail the experimental works using the new proposed device. It presents the steps of applied this model by using different types of soil. This chapter shows the measurements of water turbidity which entering water intake plants at different intervals; also it shows the way of evaluating device efficiency.

Chapter (6): (Results and Discussion)

This chapter contains the results of the experimental works using the new proposed device. Also, it discusses the results of the proposed technology for withdrawal of sediment which accumulated in front of the entrances to water intakes.

<u>Chapter (7)</u>: (Conclusions and Recommendations)

This chapter contains the conclusions based on the using of this new proposed device. Also, it contains the most important recommendations for future studies.

TABLE OF CONTENTS

	F	Page
		I
		III
•		IV
		VIII
		X III X IV
_		XVI
		XVII
CHAPTER (1)	Introduction	
1.1 Background		1
1.2 Sediment Sources		. 3
1.3 Modes of Sediment	Transport	. 4
1.4 Problem Statement	t	. 5
•		
	em	8
	ation Process	8
	ning Location of Intakes	
1.10 Thesis Layout		. 14
CHAPTER (2)	Literature Review	
2.1Traditional Dredgin	ng Methods	16
2.1.1 Hydraulic Suction Dredges		19
2.1.1.1 Mud C	Cat Dredges	20
	Head Dredges	21
	r Dredges	21
2.1.2 Mechanical Dredges		22
	nell Dredges	23
	Bucket Dredges	24
	ne Dredges	25
		27
2.1.2.4 Backhoe or Dipper Dredges		27

2.1.3.1	Γhe Mud Cat
2.1.3.2	A Remotely Dredges
2.1.3.3 I	Hydrodynamic Dredges
2.1.3.4	Гhe Pneuma Pump
2.1.3.5	Airlift Dredging Pump
2.1.3.6	Гhe Oozer Pump
2.1.3.7	Water Injection Dredges
	echnology Evaluation
	ages and Disadvantages of Dredging Technologies
2.3 Reviewing D	Oredging Technical Reports
CHAPTER (3)	Environmental Impacts of Traditional
	Dredging Methods
3.1 Dredging Pr	ocess
3.2 Turbidity an	nd Suspended Solids
3.3 The General	Impacts of Dredging
3.3.1 Potentia	al Impacts on Water Quality.
3.3.2 Potentia	al Impacts on Sediments
3.3.3 Potentia	al Impacts on Biological sources
3.3.4 Potentia	al impacts on other Resource Areas
3.3.5 Environ	nmental Impacts of Water Injection Dredging
3.4 Environmen	tal Impacts of the Dredged Materials
3.5 The Most In	nportant Impacts
3.6 Effects of Dr	redging on the Marine Environment
3.7 Effects of Se	edimentation on Water Quality and Aquatic
3. 8 Environmen	ntal Considerations
_	f Marine Dredging Environmental Effects
3.10 Mitigation	Measures
3.11 Procedures	for Measuring Water Quality Impacts
	with Dredging
3.12 Advance M	laintenance
	ntal Impact Assessment
3 14 Stratogic F	nvironmental Assessments

CHAPTER (4)	Methodology	
4.1 Sediment Trans	sport Mathematical Models	62
4.2 Equations of Bed Material Sediment Load		63
-	Problem at Water Plants	65
4.4 Proposed Sedin	nent Removal Device	66
4.4.1 Device Th	neory	66
	ocation	72
4.4.3 Device Co	omponents	73
4.4.4 Device Fo	ootsteps Operation	74
4.5 Conformation	Footstep of Proposed Device	79
4.5.1 Tasks and	Materials Needed	79
4.5.2 Device M	anufacturing Steps	79
CHAPTER (5)	Experimental Works	
5.1 Experimental V	Works by Using Proposed Device	87
5.1.1 Devices U	Used in the Measurements During the Testing	
Process		89
5.2.1 The Testin	ng Process Steps	89
	speriment Test by Use Medium Sand	
	ase 1)	92
	reperiment Test by Use Coarse Silt (Case 2)	92
	speriment Test by Use Sediment Medium It (Case 3)	97
	speriment Test by Use Mixture of Medium)
	nd, Coarse Silt and Medium Silt (Case 4)	97
5.1.3.5 Ex	speriment Test by Use Clay (Case 5)	102
	speriment Test by Use Medium Sand,	
Co	parse Silt, Medium Silt and Clay (Case 6)	102
CHAPTER (6)	Results and Discussion	
6.1 The Proposed I	Device Efficiency	110
6.2 Experimental T	Test Results	111
-	etween Experimental Tests Considered	
		112
	tween Proposed Device and Traditional	114
Dreaging Meth	ods	114

6.5 Economical Assessments for The Proposed Device	114	
6.5.1 Saved Time due to Apply the Proposed Device		
6.5.2 Saved Cost due to Apply the Proposed Device		
6.6 Estimation of The Cost and Value of Water		
6.6.1 Components of Full Cost		
6.7 The Chemical Optimization by Use the Device		
6.7.3 Effect of Plant Variations and Treatment on Turbidity		
6.7.4 Economical Evaluation of Different Alternative Plants		
6.8 Environmental Assessment For The Proposed Device		
CHAPTER (7) Conclusions and Recommendations		
CITITITES (1)		
7.1Conclusions	141	
7.2 Recommendations		
References	146	
Appendixes		
Appendix (A) Nile Research Institute Technical Reports		