The Effect of Increment Thickness and Light Curing Distance on Flexural Strength, Microhardness and Cytotoxic Behavior of Two Resin Modified Glass Ionomer Cements

Thesis

Submitted to the Faculty of Dentistry, Ain Shams University in partial fulfillment of the requirements of Doctor degree in operative dentistry

Zainab Mohamed Diaa El Din Soliman

Assistant Lecturer in Operative Department B.D.S (2003), M.Sc. (2011) Ain Shams University

> Faculty of Dentistry Ain Shams University

Supervisors

Dr. Hanan Abdel Aziz Niazi

Professor of Operative Dentistry
Faculty of Dentistry
Ain Shams University

Dr. Farid Mohammed Sabry El-Askary

Professor and Head of Operative Dentistry Department Faculty of Dentistry Ain Shams University I dedicate my work to my family to whom I owe everything for, my husband for his continuous support, my two lovely kids who always inspire me to improve myself. Your love and trust are my foundations.

Thank you all

Acknowledgement

I would like to express my thanks to *Dr. Hanan Abdel Aziz Niazi* Professor of operative dentistry, Ain Shams University, for her continuous support and encouragement throughout the course of this research.

My deepest gratitude and appreciation for *Dr*. *Farid Sabry El Askary*, Professor of operative dentistry, and head of operative dentistry department Ain Shams University, for his continuous guidance, follow up, help and confidence.

I would like to thank *Dr. Serag El-Dien Mohammed* for his effort and technical support during cytotoxic testing.

Special and sincere thanks to my colleagues in the operative dentistry department, Ain Shams University for their contribution in this research work and most importantly for their support, care and trust.

List of Contents

List of Tables	
List of Figures	v
Introduction	
Review of Literature	
Glass ionomer cements	3
Miniflexure test	11
Microhardness test	18
Cytotoxicity test	27
Aim of the Study	
Materials and Methods	
Results	
Discussion	
Summary and Conclusions	
References	
Arabic Summary	

List of Figures

<u>Figure No.</u>	<u>Figure Title</u>	<u>Page</u>
Figure 1:	A:Split copper mould & composite resin replica.	45
	B: Elipar S10 light curing unit.	
Figure 2:	A: Circular copper moulds and lids with glued 2mm & 4mm composite replicas.	45
	B: Rubber Base impression with negative indention of miniflexure specimen.	
Figure 3:	A: RMGIC injection in the rubber base mold	46
	B: celluloid strip and glass slide were placed on top of each specimen to extrude excess material.	
Figure 4:	Overlap specimen curing technique.	47

Figure 5:	A: Zero mm light curing distance. B: 10mm light curing distance using specially designed stainless steel cube.	48
Figure 6:	Measuring the specimen using digital Calliper.	48
Figure 7:	Three point loading test A: Specially designed attachment consisting of a base with two vertical bars attached to it B: Bar attached to the universal testing machine to apply force.	49
Figure 8:	A: Ready-made plastic mold and material injection. B: light curing of zero mm curing distance. C: Light curing of 10mm curing distance using copper tube. D: Microhardness 4mm and 2mm specimens.	51
Figure 9:	Nexus 4000 TM Vicker's Microhardness Tester.	52
Figure 10:	Chinese Hamster Ovarian (CHO) cell line.	53
Figure 11:	Split Teflon copper molds (2mm & 4mm) for Cytotoxicity samples preparation.	55
Figure 12:	Light curing assembly for cytotoxicity specimens.	55
Figure 13:	Seeding cells in a 96 well plate using	57

micro-pipette.

Figure 14:	ELISA microplate reader.	57
Figure 15:	Bar chart for the effect of material within the same increment thickness and light curing distance on flexure strength (MPa).	61
Figure 16:	Bar chart for the effect of increment thickness within the same light curing distance and RMGIC on flexure strength (MPa).	63
Figure 17:	Bar chart for the effect of light curing distance within the same increment thickness and RMGIC on flexure strength (MPa).	65
Figure 18:	Bar Chart for the effect of RMGIC within the same increment thickness and light curing distance on the relative microhardness (bottom/top ratio).	67
Figure 19:	Bar chart for the effect of increment thickness within the same light curing distance and RMGIC on relative microhardness (bottom/top ratio).	69
Figure 20:	Bar chart for the effect of light curing distance within the same increment thickness and RMGIC on relative microhardness (bottom/top ratio).	71
Figure 21:	Bar chart for the effect of RMGIC within	74

the same increment thickness and light curing distance on the cytotoxicity (dead cell %).

- Figure 22: Bar chart for the effect of increment thickness within the same light curing distance and RMGIC on cytotoxicity (dead cell %).
- Figure 23: Bar chart for the effect of light curing distance within the same increment thickness and RMGIC on cytotoxicity (dead cell %).

List of Tables

Table No.	Table Title	<u>Page</u>
Table 1:	Materials, Description , Composition, Manufacturer, and Lot no.	40
Table 2:	Experimental variables investigated in the study.	42
Table 3:	Interaction between tested variables.	42
Table 4:	Three-Way ANOVA test for the effect of RMGIC, increment thickness and light curing distance on the flexure strength (PMa) and the interaction between all tested variables	60
Table 5:	Independent <i>t</i> -test for the effect of RMGIC within the same increment thickness and light curing distance on flexure strength (MPa).	61
Table 6:	One-Way ANOVA followed by Tukey test for the effect of increment thickness within the same light curing distance and RMGIC on flexure strength (MPa).	63
Table 7:	Independent t-test for the effect of light curing distance within the same increment thickness and RMGIC on flexure strength (MPa).	64

- Table 8: Three-Way ANOVA test for the effect of 66 RMGIC, increment thickness and light curing distance on the relative microhardness (bottom/top ratio) and the interaction between all tested variables.
- **Table 9:** Independent t-test for the effect of RMGIC 67 within the same increment thickness and light curing distance on the relative microhardness (bottom/top ratio).
- **Table 10:** One-Way ANOVA followed by Tukey test **69** for the effect of increment thickness within the same light curing distance and RMGIC on relative microhardness (bottom/top ratio).
- Table 11: Independent t-test for the effect of light 70 curing distance within the same increment thickness and RMGIC on relative microhardness (bottom/top ratio).
- Table 12: Three-Way ANOVA test for the effect of 72 RMGIC, increment thickness and light curing distance on cytotoxicity (dead cell %) and the interaction between all tested variables.
- Table 13: Independent t-test for the effect of RMGIC 73 within the same increment thickness and light curing distance on cytotoxicity (dead cell %).

- **Table 14:** One-Way ANOVA followed by Tukey test **75** for the effect of increment thickness within the same light curing distance and RMGIC on cytotoxicity (dead cell %).
- **Table 15:** Independent t-test for the effect of light 77 curing distance within the same increment thickness and RMGIC on cytotoxicity (dead cell %).

Demands for esthetic restorations have increased significantly in the last few decades. Tooth colored restorative materials have developed to satisfy patients' needs. The most popular esthetic restorations are resin composites and glass ionomer cements (GICs). Hydrophilic polymerisable monomers were added to GIC to produce resin modified glass ionomer cements $(RMGIC)^{\perp}$. While maintaining adhesion to tooth structure and fluoride release of GICs², RMGIC have the benefits of longer working time, early strength development, decreased early moisture sensitivity³, improved esthetics and the ability to copolymerize with other resin based restorative materials $\frac{4}{3}$.

Restoring deep Class II cavities while achieving perfect marginal seal is still controversial. The sandwich technique was first described by Mclean and Wilson ⁵ to replace the highly moisture sensitive resin composite with GIC in deep subgingival cavities. Later on the use of RMGICs surpassed that of GIC due to their decreased early moisture sensitivity ⁶. Unfortunately, placing the light curing guide in direct contact with the RMGIC in deep proximal cavities cannot be done. The increased

distance between the restoration and curing guide tip might affect the total irradiation energy reaching the restoration, altering the degree of monomer conversion in the final set material and thereby the mechanical properties of the material including microhardness and flexure strength.

Some clinicians assume that RMGIC could be placed in bulk like GICs, light attenuation throughout the material thickness, is expected which might affect the degree of monomer conversion at the deeper parts of the restoration. Relative microhardness test performed by comparing bottom/top microhardness of the material has been frequently used to investigate the material depth of cure^{7,8}.

Flexure strength was used to test materials tensile strength as the material fails in flexure testing when the maximum tensile stress is reached⁹. Tensile strength is a crucial property in restorative materials since most restorative materials fail in tension when subjected to occlusal loading.

Soft tissues local responses frequently reported after insertion of restorative materials could be due to incomplete polymerization of the material, leading to immediate leaching of components from the restoration 10. Cytotoxic in-vitro tests are advantageous to test tissue response to materials since they have the benefits of being safe, easily controllable and reproducible when compared to the in-vivo studies 11.

Therefore, studying the effect of different distances from light curing guide and different increment thicknesses on the material flexure strength, microhardness and cytotoxicity could give insight on the effect of these variables on a restoration's mechanical performance as well as its biocompatibility.