Effects of the Air Supply Outlets Geometry on Human Comfort Inside living Rooms

By

Eng. Taher Mohamed Abou-deif Ismail

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Effects of the Air Supply Outlets Geometry on Human Comfort Inside living Rooms

By

Eng. Taher Mohamed Abou-deif Ismail

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Mechanical Power Engineering Department Faculty of Engineering Cairo University Prof. Dr. Samy M. Morcos Mechanical Power Engineering Department Faculty of Engineering Cairo University

Prof. Dr. Ahmed A. Medhat Housing and Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Effects of the Air Supply Outlets Geometry on Human Comfort Inside living Rooms

By

Eng. Taher Mohamed Abou-deif Ismail

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil

MainThesis Advisor

Prof. Dr. Samy M. Morcos

Thesis Advisor

Prof. Dr. Mahmoud A. Fouad

Member

Prof. Dr. Osama E. Abdellatif Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

Engineer: taher Mohamed abou-deif ismail

Date of Birth: 18 / 03 / 1986

Nationality: egyptian

E-mail: eng.tahermohamed@yahoo.com
Phone.: 01117277214-01006766754-23168843
Address: 20 elwehda street -el malaa-dar elsalam

Registration Date: 01 / 10 /2011

Awarding Date: / /

Degree: DOCTOR OF PHILOSOPHY
Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Samy Morad Morcos Prof. Dr. Ahmed Ahmed Medhat

(Professor at Housing and Building National Research Center)

Examiners: Prof. Dr. Osama Ezzat Abdel-lattif

(Professor at shopra faculty of engineering/benha university)

Prof. Dr. Mahmoud Ahmed Fouad

Prof. Dr. Essam E. Khalil Hassan Khalil

Prof.Dr. Samy Morad Morcos

Title of Thesis: Effects of the Air Supply Outlets Geometry on Human Comfort Inside living Rooms.

Key Words: (living rooms -thermal comfort -ADPI - Shapes of supply and extracts openings)

Summary:

The ratio (Tv/L) can be used to predict the Air Diffusion Performance Index (ADPI) and expected occupant comfort for a number of different types of air supply outlets.

In the current ASHRAE Handbook Chapters on room air distribution, ADPI, using the ratio of Tv/L, is the recommended method to predict the percentage of points within a space that meet the effective draft temperature criteria for comfort.

The Objective of the current study is to validate the current Tv/L and corresponding ADPI values currently presented in the ASHRAE Handbook, and Develop Tv/L and obtainable ADPI values for other types of air supply outlets.

ACKNOWLEDGEMENT

I am heartily thankful to my supervisors, **Prof. Dr. Essam E. Khalil, Prof. Dr. Samy M. Morcos, and Prof. Dr.Ahmed A. Medhat** who was abundantly helpful and offered invaluable assistance, support and guidance whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject of this thesis.

Also, I would like to thank **Dr. Ismail bialy** for his support and the real help, my parents, my wife, my brother and my sisters. Their insight and wisdom have been invaluable.

I would like to thank the other members of my committee.

Finally, I cannot forget the support of my colleagues in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

CONTENTS

SUBJECT	PAGE
CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
NOMENECLATURE	xvi
GREEK LETTERS	xviii
SUPERSCRIBTS AND SUBSCRIBTS	xix
ABBREVIATIONS	XX
ACKNOWLEDGEMENT	xxi
ABSTRACT	xxii
CHAPTED 1 DATE OF LICENON	1
CHAPTER 1 INTRODUCTION	1
1.1 General	1
1.2 Indoor Air Quality	1
1.3 Ventilation Principles	2
1.4 Air Conditioning Systems	4
1.5 Thermal Comfort	6
CHAPTER 2 REVIEW of THERMAL COMFORT	8
2.1 Thermal comfort	8
2.2 The Air Diffusion Performance Index (ADPI)	22
2.3 Present Work	25
CHAPTER 3 LITERATURE REVIEW	26
3.1 General	26
3.2 Papers concerned with general flow investigations	31

in enclosed space

3.3. Summary and Scope of present work	49
CHAPTER 4 MATHEMATICAL MODELLING& GOVERNING EQUATIONS 4.1 Introduction	50 50
4.2 Governing Equations	51
4.3 Turbulence Modeling	54
4.4 Grid Generation and Mesh Criteria	63
4.5 Discretization and Mathematical Modeling	63
CHAPTER 5 Validation	66
5.1 Introduction	66
5.2 Description of the lecture room configuration	66
5.3 Measuring Instruments	67
5.4 Measuring Locations	67
5.5 Experimental procedure	69
5.6 Experimental Results	70
5.7 Assessment of CFD Modeling Validation	73
5.8 Results	73
5.9 Conclusions	85
CHAPTER 6 Modeling of Air Flow Characteristics in Living Room	86
6.1 Introduction	86
6.2 Case Geometry	87
6.3 Boundary Conditions	87
6.4 Parametric Studies	92
CHAPTER 7 CONCLUSIONS AND SUGGESTED FUTURE WORK	135
7.1 Introduction	135
7.2 Conclusions of the Present Work	135

7.3 Recommendations for Future Work	136
REFERENCES	137
Arabic Cover and Arabic Abstract	140

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
1.1	Carbon dioxide air concentration level standards	2
2.1	Three classes of acceptable thermal environment for general comfort	11
2.2	Percentage of dissatisfied (DR and PD) due to local discomfort from various sources for different classes of thermal environment	14
2.3	Allowable radiant temperature asymmetry for the three classes of thermal environment [7]	15
2.4	Allowable vertical air temperature difference between head and	17
2.5	ankles for the three classes of thermal environment [7] Allowable range of the floor temperature for the three classes of the thermal environment [7]	18
2.6	Allowable cyclic operative temperature variation, [7]	19
2.7	Limits on Temperature Drifts and Ramps [7]	20
2.8	Recommended ADPI Ranges for Outlets. [8]	24
3.1	Summary of the selected previous work using numerical prediction in airflow patterns through enclosures	27
5.1	Measurements Lines Coordinates at Supply Duct	69
5.2	Measurements in the plane cutting the supply grill	70
6.1	Inlet Air Conditions	88
6.2	ASHREA Fundamentals chapter 20 table 3	91
6.3	results from CFD simulation for case 1	96
6.4	results from CFD simulation for case 2	100
6.5	results from CFD simulation for case 3	105
6.6	results from CFD simulation for case 4	110
6.7	results from CFD simulation for case 5	115
6.8	results from CFD simulation for case 6	120
6.9	results from CFD simulation for case 7	125
6.10	Results of measurements	128

6.11	results from CFD simulation for case 8	133
6.10	ASHREA Fundamentals chapter 20 table 3	143
6.11	T50/L VS. ADPI for the cases under study	143

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
1.1	Residential ventilation.	3
1.2	Air exchange into space.	4
1.3	AHU conducted to an air-conditioned space.	5
1.4	Relative Humidity and Comfort, [3]	7
2.1	Acceptable range of operative temperature and humidity for spaces that meet the criteria specified in Section 2.1.2.1.1.	10
2.2	Predicted percentage dissatisfied (PPD) as a function of predicted mean vote (PMV)	11
2.3	Air speed required to offset increased temperature.	13
2.4	Allowable radiant temperature asymmetry for the three classes of thermal environment [7]	15
2.5	Allowable mean air speed as a function of air temperature and turbulence intensity for Class A and Class B thermal environments. Class C is the same as Class B. [7]	16
2.6	Local thermal discomfort caused by vertical temperature differences. [7]	17
2.7	Local discomfort caused by warm and cool floors.[7]	18
2.8	Local air temperature minus ambient temperature, [8]	22
2.9,A	Comfort index (ADPI) vs. throw ratio (T50/L), [8]	23
2.9,B	Comfort index (ADPI) vs. throw ratio (T50/L),[8]	23
3.1	Grid systems and location of occupants. [9].	31
3.2	Configuration of the modeled operating room in elevation and plan views [12].	32
3.3	Effect of operating table presence on the air flow regimes (W velocity contours) without presence of partial walls, X-Z plane (Y = 2.5 m) [12].	33
3.4	Effect of operating table presence on the air flow regimes (W velocity contours) with presence of partial walls, X-Z plane $(Y = 2.5 \text{ m})$ [12].	33
3.5	Configuration of the modeled lecture theatre and the locations of measuring points [13].	34
3.6	Air velocity profile at $Y = 6.1 \text{ m}$ [13].	35
3.7	Air temperature profile at $Y = 6.1 \text{ m}$ [13].	35
3.8	Meshed room configuration [14].	37

3.9	Minibat test cell [14]	37
3.10	Comparison between measurements and numerical results for velocity	38
	(left) and temperature (right) [14].	
3.11	Room Configuration [18].	39
3.12	Velocity Vectors at Y= 7.8 m (a) k-ε model; (b) RNG k-ε model [18].	40
3.13	Isovalues of turbulent viscosity in the X-Z plane at Y=9.1 m [18]. (a) k-ε model; (b) RNG k-ε model	40
3.14	Schematic sketch of the typical clean room with vertical unidirectional flow [22].	41
3.15	Streamline patterns for $C = 25$ %, $L = 10$ m at different values of H (a) $H = 0.6$ m (b) $H = 1$ m (c) $H = 1.5$ m [22].	42
3.16	Slots arrangement in a habitable room with the UFAD system [26].	43
3.17	Minimum recommended value of the inlet air velocity as a function of a volume flow rate [26].	43
3.18	Minimum recommended value of the inlet air velocity as a function of a window height [26].	44
3.19	Drawing of the modeled room showing the partition location [29].	45
3.20	Locations of LDA measurements and numerical predictions inside the room, at middle room width [29].	45
3.21	Comparison between LDA measurements and numerical simulation of the vertical velocity component along the vertical inlet jet axis [29].	46
3.22	Comparison between LDA measurements and numerical simulation of the vertical velocity component along the horizontal line at mid- partition [29].	46
3.23	SF ₆ concentrations (mg/m ³) in the simulated room [30].	47
3.24	Figure 3.24 shows the measured and computed results of PMV isovalues in the test room on a vertical plane through the centerline of supply and exhaust diffusers	48
3.25	supply and exhaust diffusers. Measured and computed results of PMV iso-values in the test room (a) Experimental iso-PMV (b) Numerical iso-PMV values [35].	48

4.1	Flow chart CFD analysis process	51
4.2	Stress components on the six faces of the fluid element	52
4.3 4.4	Near-Wall Treatments in FLUENT Solution Algorithm	59 65
5.1 5.2	Lecture room configuration. air conditioner configuration	66 67
5.3A	Figure 5.3 A: Lines of measurements near supply grill.	68
5.3B	Figure 5.3 B: Lines of measurements near supply grill.	68
5.3C	Figure 5.3 C: Lines of measurements near supply grill.	69
5.4	Validation Process [36]	73
5.5	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 1.	74
5.6	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 2	74
5.7	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 3.	75
5.8	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 4.	75
5.9	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 5.	76
5.10	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 6.	76
5.11	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 7.	77
5.12	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 8.	77
5.13	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 9.	78
5.14	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 10.	78
5.15	Comparisons between measured and predicted air temperature profiles downstream the supply grill at line 11.	79

5.16	the supply grill at line 1.	80
5.17	Comparisons between measured and predicted air velocity downstream the supply grill at line 2.	80
5.18	Comparisons between measured and predicted air velocity downstream the supply grill at line 3.	81
5.19	Comparisons between measured and predicted air velocity downstream the supply grill at line 4.	81
5.20	Comparisons between measured and predicted air velocity downstream the supply grill at line 5.	82
5.21	Comparisons between measured and predicted air velocity downstream the supply grill at line 6.	82
5.22	Comparisons between measured and predicted air velocity downstream the supply grill at line 7.	83
5.23	Comparisons between measured and predicted air velocity downstream the supply grill at line 8.	83
5.24	Comparisons between measured and predicted air velocity downstream the supply grill at line 9.	84
5.25	Comparisons between measured and predicted air velocity downstream the supply grill at line 10.	84
5.26	Comparisons between measured and predicted air velocity downstream the supply grill at line 11.	85
6.1	Case Geometry	87
6.2	Supply Diffuser	88
6.3	Configuration of occupant's model	89
6.4	Mean skin temperature as a function in activity level [39]	89
6.5	Comfort Criteria	90
6.6	location of the selected points	92
6.7	Temperature contours at the centerline plane x=2m	93
6.8	Temperature contours of a horizontal plane at Y=1m	93
6.9	PMV contours at the centerline plane x=2m	93
6.10	PMV contours in a horizontal plane at Y=1m	94
6.11	Room PPD histogram	94
6.12	Effective Draft Temperature contours at the centerline plane x=2m	94
6.13	Effective Draft Temperature contours in a horizontal plane at Y=1	95
6.14	Temperature contours in a horizontal plane at Y=1m	95
6.15	velocity contours in a horizontal plane at Y=1m	95
6.16	Temperature contours at the centerline plane x=2m	97

6.17	Temperature contours of a horizontal plane at Y=1m	97
6.18	PMV contours at the centerline plane x=2m	97
6.19	PMV contours in a horizontal plane at Y=1m	98
6.20	Room PPD histogram	98
6.21	Effective Draft Temperature contours at the centerline plane x=2m	98
6.22	Effective Draft Temperature contours in a horizontal plane at Y=1	99
6.23	Temperature contours in a horizontal plane at Y=1m	99
6.24	velocity contours in a horizontal plane at Y=1m	99
6.25	Temperature contours at the centerline plane x=2m	101
6.26	Temperature contours of a horizontal plane at Y=1m	101
6.27	Velocity vectors of air supplied from square diffuser	101
6.28	Supplied air angles	102
6.29	PMV contours at the centerline plane x=2m	102
6.30	PMV contours in a horizontal plane at Y=1m	102
6.31	Room PPD histogram	103
6.32	Effective Draft Temperature contours at the centerline plane x=2m	103
6.33	Effective Draft Temperature contours in a horizontal plane at Y=1	103
6.34	Temperature contours in a horizontal plane at Y=1m	104
6.35	velocity contours in a horizontal plane at Y=1m	104
6.36	Temperature contours at the centerline plane x=2m	106
6.37	Temperature contours of a horizontal plane at Y=1m	106
6.38	Velocity Vectors of air supplied from the circular diffuser	106
6.39	PMV contours at the centerline plane x=2m	107
6.40	PMV contours in a horizontal plane at Y=1m	107
6.41	Room PPD histogram	107
6.42	Effective Draft Temperature contours at the centerline plane x=2m	108
6.43	Effective Draft Temperature contours in a horizontal plane at Y=1	108
6.44	Temperature contours in a horizontal plane at Y=1m	108
6.45	velocity contours in a horizontal plane at Y=1m	109