

FACULTY OF ENGINEERING IN AIN SHAMS CIVIL ENGINEERING DEPARTMENT

PERFORMANCE ASSESSMENT OF DIFFERENT MEDIA FOR A BIOLOGICAL FILTER WITHIN LOW COST WASTEWATER TREATMENT UNIT

A Thesis

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of M.SC Degree in Civil Engineering

Prepared by

ENG. HATEM MOHAMED TAHA

B.Sc. in civil Engineering 2009, Faculty of Engineering, ASU

Supervisors

Prof. Dr. FIKRY HALIM GHOBRIAL,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, ASU, Cairo, EGYPT

Prof. Dr. TAREK ISMAIL SABRY,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, ASU, Cairo, EGYPT

Dr. AHMED SHAFIK ELGENDY,

Associate Professor of Environmental Engineering Institute of Environmental Studies and Research, ASU, Cairo, EGYPT

FACULTY OF ENGINEERING IN MATARIYA CIVIL ENGINEERING DEPARTMENT

PERFORMANCE ASSESSMENT OF DIFFERENT MEDIA FOR A BIOLOGICAL FILTER WITHIN LOW COST WASTEWATER TREATMENT UNIT

A Thesis For

Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of M.SC Degree in Civil Engineering

By

Eng. HATEM MOHAMED TAHA

B.Sc. in civil Engineering 2009, Faculty of Engineering, Ain Shams University

THESIS APPROVAL EXAMINERAS COMMITTEE SIGNATURE Prof. Dr. MOHAMED EL SAID ALI BASSIONY Professor of Sanitary & Environmental Engineering Faculty of Engineering, Banha University, Banha, Egypt Prof. Dr. MOHAMED HASSAN ABD ELRAZEQ Professor of Sanitary & Environmental Engineering Faculty of Engineering, AinShams University, Cairo, Egypt Prof. Dr. FIKRY HALIM GHOBRIAL Professor of Sanitary & Environmental Engineering Faculty of Engineering, AinShamsUniversity, Cairo, Egypt

Date: ----/2014

DEDICATION

This work takes a period from my life. I wish to dedicate it to whom suffered to educate, prepare, build capacity and help myself to be as I am;

TO

MY FATHER, MY MOTHER, MY SISTER&MY BROTHER

ALSO TO MY
NIECE

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from December 2009 to December 2013.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: - ---/2014 Signature:- -----

Name:- HATEM MOHAMED TAHA

ACKNOWLEDGMENTS

The candidate wishes deeply to express his gratitude to **Prof. Dr.** FikryHalimGhobrial, Professor of Sanitary & environmental Engineering, Faculty of Engineering, Ain Shams University, for suggesting the problem, his patient guidance, helpful suggestions, sponsoring, supervision, great support, advising this workand preparation of thesis

Also, great thanks toProf.Dr. Tarek Ismail Sabry, Professor of Sanitary & environmental Engineering, Faculty of Engineering, Ain Shams University, Cairo, EGYPT for suggesting the problem, his patient guidance, helpful suggestions, sponsoring, supervision, great support, advising this work and help in laboratory work. and preparation of thesis.

Sincere thanks are given to **Dr. AHMED SHAFIK EL-GENDY,** Assistant Professor of Environmental Engineering, Institute of Environmental Studies and Research, Cairo, EGYPT, for suggesting the problem, his patient guidance, helpful suggestions, sponsoring, supervision, great support, advising this work and help in laboratory work. and preparation of thesis

The author expresses hisgreat thanks to the staff and personnel of zennen WWTP and national research center, for help, assistance, facilities, and cooperation in unit operation and laboratory analysis during the preparation of this study.

Also, sincere thanks are to the staff and personnel of **Sanitary Engineering section, faculty of Engineering, Ain Shams** for facilities, encouragement and cooperation during the preparation of this study.

At the end no words can express my deep thanks and regard to my beloved family

ABSTRACT

Name: HATEM MOHAMED TAHA

Title: PERFORMANCE ASSESSMENT OF DIFFERENT MEDIA FOR A BIOLOGICAL FILTER WITHIN LOW COST WASTEWATER TREATMENT UNIT

Faculty: Faculty of Engineering, Ain Shams University.

Specialty: Civil Engineering, Public Works, Sanitary Engineering.

Summary:

Wastewater treatment is one of the important subjects taken into consideration in developing countries. In such countries, the main source of pollution is due to discharging wastewater without adequate treatment into watercourses.

The use of conventional types of wastewater treatment in these countries in the rural areas is hindered by the huge investments and large area requirements of agricultural land. These reasons led the scientific community to seek solutions relying on the use of local products or byproducts to establish low cost wastewater treatment systems employing new modified techniques suitable for serving different specific conditions.

Also, the concentration on minimizing of power consumption, maintenance requirements, complicated techniques and imported equipment became one of the main targets for the ongoing studies. This leads to choose the attached growth system after the anaerobic treatment unit to decrease the required land, minimize the construction and operation cost as possible and reach the requirements of law 48.

This study was carried out to check the possibility of applying biological filters following the USBR system. The biological filter receives the Down-flow effluent from the USBR system, which drops through perforated trays to increase the DO in level, before being introduced to the biological filter.

Four selected different filtration packed media were used as aerobic biological filter units. All the media are available in the local market, the tested media (sponge, plastic, Electrical flexible corrugated hoses, and gravel) were used in parallel modules to evaluate the performance of each separately and determine its removal efficiency for the different pollutants represented by the parameters COD, CODs, TSS, and VSS. To achieve the study objectives the tested media were exposed to several hydraulic loading rates and shock load during the experimental program using continuous flow pilot plant running for seven months period.

The use of passive aeration after the anaerobic phases of the treatment increases the dissolved oxygen contents of the anaerobic effluent to reach an average concentration of 5.22 mg/L.

All tested media achieved good removal efficiency of the monitored pollutants under hydraulic loading rate of $2.5\,\mathrm{m}^3/\mathrm{m}^2/\mathrm{day}$ to $12\,\mathrm{m}^3/\mathrm{m}^2/\mathrm{day}$ and produced effluent quality that meets Law 48 requirements most of the time.

The best removal efficiency occurred at hydraulic loading rate range of $2.5-3.75 \, \text{m}^3/\text{m}^2/\text{day}$ for all tested media. The best two media, however, were sponge and plastic.

All the tested media were affected during the shock load and impaired the effluent quality, but after 48 hours effluent quality returned back to the regular background range except gravel.

The sponge media was the best media for all hydraulic loading rates due to the big surface area and the high catchment of water that keep the biofilm wet at low hydraulic loading rate.

KEY WORDS

Wastewater, Wastewater Treatment, Attached growth system, Biological filter media, low cost treatment system.

WHO ARE THESE SUPERVISORS Supervisors:
Prof. Dr. FIKRY HALIM GHOBRIAL,
Dr. TAREK ISMAIL SABRY,
Dr. AHMED SHAFIK ELGENDY

ABBREVIATIONS

SYMBOL	MEANING
BOD	Biochemical Oxygen Demand
COD	Chemical Oxygen Demand
TSS	Total Suspended Solids
VSS	Volatile Suspended Solids
TKN	Total Kjeldahl Nitrogen
CODs	Soluble Chemical Oxygen Demand
BAF	Biological aerated filters
DBAF	Dual Biological Aerated Filter
RBC	Rotating Biological Contactors
USBR	Upflow Septic Tank Baffled Reactor
DO	Dissolved Oxygen

TABLE OF CONTENTS

Title		Page
Cover		I
Thesis A	pproval	Ii
Dedication	on	Iii
Statemen	nt	Iv
Acknow	ledgement	V
Abstract		Vi
Abbrevia	ations	Viii
Table Of	Contents	Ix
List Of 7	Cables	Xi
List Of F	<u> </u>	Xv
Chapter	I: Introduction	1-2
1.1	General	1
1.2	Study Objectives	1
1.3	Scope Of Work	2
Chapter	· II: Literature Review	3-25
2.1	History Of Biological Filters	3
2.1.1	History Of Distribution Systems	4
2.1.2	History Of Media	4
2.2	Types Of Biological Filters	5
2.2.1	Trickling Filters	5
2.2.1.1	Low Or Standard Rate	5
2.2.1.2	Intermediate-Rate Filters	6
2.2.1.3	High-Rate Filters	6
2.2.1.4	Roughing Filters	6
2.2.1.5	Two Stage Filters	7
2.2.2	Rotating Biological Contactors (Rbcs)	7
2.2.3	Biological Aerated Filters (Bafs)	9
2.2.3.1	Downflow Filter	10
2.2.3.2	Upflow Filter	11
2.3	Performance Of Biological Filters In Wastewater Treatment	11
2.4	Factors Affecting The Performance Of Biological Filters	13
2.4.1	Temperature	13
2.4.2	Process Loading	14
2.4.3	Mass Transport	14
2.4.4	Recirculation	15
2.4.5	Ventilation	15

2.4.6	Media Depth	15
2.4.7	Void Ratio	16
2.4.8	Specific Surface Area	16
2.4.9	Media Type And Size	16
2.5	Types Of Media	17
2.5.1	Granular Media	17
2.5.1.1	Gravel And Crushed Rock	17
2.5.1.2	Activated Carbon Biofilter	18
2.5.1.3	Expanded Shale	18
2.5.2	Plastic Packing	19
2.5.3	Agricultural Media	20
2.5.4	Sponge Media	21
2.6	Mechanisms Of Pollutants Removal	21
2.7	Microbiology Of Attached Growth System	23
2.8	Settling Properties	24
2.9	Properties Of Sludge Produced From Settling Of Sloughed	24
	Biofilm	24
2.10	Gases And Odor Control	25
Chapter	III: Materials And Methods	27-46
3.1	Phases Of Study	27
3.1.1	Phase I	27
3.1.2	Phase II	27
3.1.3	Phase III	28
3.2	Experimental Setup	28
3.2.1	Lab-Scale Setup	30
3.2.2	Pilot-Scale Setup	34
3.3	Media Of Biological Filter	37
3.3.1	Plastic Media	37
3.3.2	Sponge	38
3.3.3	Electrical Flexible Corrugated Hoses (Tubes)	39
3.3.4	Gravel	40
3.4	Sampling	41
3.4.1	Location Of Sampling Points And Frequency	41
3.4.2	Sampling Method	42
3.5	Analysis Of Samples	42
3.5.1	Monitored Parameters	42
3.5.1.1	Biochemical Oxygen Demand	45
3.5.1.2	Dissolved Oxygen,(DO)	45
3.5.1.3	Total Chemical Oxygen Demand,(CODt)& Soluble Chemical	45
	Oxygen Demand,(CODs)	
3514	Total Suspended Solids (TSS)& Volatile Suspended	45

	Solids,(VSS)	
3.5.1.5	Phosphorous	45
3.5.1.6	Nitrogen	46
3.5.1.7	Ph	46
3.6	Flow Rate Measurement	46
Chapter I	V:Field Measurement Results And Discussion	47-128
4.1	Performance Of Different Media In The Removal Of	47
4-1-1	Run1	47
4-1-2	Run2	66
4-1-3	Run3	84
4.2	Comparison Of The Performance Of Different Media Under Different Hydraulic Loading Rates	96
4.2.1	Cod Removal Efficiency In Phase1 For The Different Filter Media	96
4.2.2	Cods Removal Efficiency In Phase1 For The Different Filter Media	98
4.2.3	TSS Removal Efficiency In Phase1 For The Different Filter Media	100
4.2.4	VSS Removal Efficiency In Phase1 For The Different Filter Media	102
4.3	Effect Of Shock Loading On The Performance Of The Different Types Of Media	103
4.3.1	Cod Shock Loading For Different Media	104
4.3.2	TSS Shock Loading For Different Media	105
4.3.3	VSS Shock Loading For Different Media	107
4.4	Phase 3	108
4.5	Comparison Of The Performance Of Sponge And Plastic Media	127
Chapter V	: Conclusion	129-130
5.1	Study Conclusions And Recommendations	129
5.2	Potential Future Research Works	129
Reference	<u>S</u>	131-138
	<u>List Of Tables</u>	
Table		Page
	I: Literature Review	3-25
Table (2-1)BOD ₅ Removal Rates For Various Filter Types		12
Table (2-2) Physical Properties Of Trickling Filters Packing Material		20
` /		-

Chapter I	II: Materials And Methods	27-46
Table (3-1)	The Operating Parameter For The Different Phases	37
Table (3-2)	Samples Locations	41
Table (3-3)	The Results Of The Monitored Parameters Of Each Sampling Point Of The Different Phases	44
Chapter F	V: Field Measurement Results And Discussion	47-128
Table (4-1)	COD Concentration In Influent And Effluent, And Cod Removal	48
	Efficiency Of The Biological Filter Using Sponge Media	70
Table (4-2)	CODs Concentration In Influent And Effluent, And Cods Removal	49
T 11 (4 0)	Efficiency Of The Biological Filter Using Sponge Media	.,
Table (4-3)	TSS Concentration In Influent And Effluent, And TSS Removal	50
Table (4.4)	Efficiency Of The Biological Filter Using Sponge Media	
Table (4-4)	VSS Concentration In Influent And Effluent, And VSS Removal	51
Toblo (4.5)	Efficiency Of The Biological Filter Using Sponge Media Cod Concentration In Influent And Effluent, And Cod Removal	
1 aute (4-3)	Efficiency Of The Biological Filter Using Plastic Media	53
Table (4-6)	CODs Concentration In Influent And Effluent, And Cods Removal	
14010 (+ 0)	Efficiency Of The Biological Filter Using Plastic Media	54
Table (4-7)	TSS Concentration In Influent And Effluent, And TSS Removal	
(. ,	Efficiency Of The Biological Filter Using Plastic Media	55
Table (4-8)	VSS Concentration In Influent And Effluent, And VSS Removal	 .
	Efficiency Of The Biological Filter Using Plastic Media	56
Table (4-9)	COD Concentration In Influent And Effluent, And Cod Removal	
	Efficiency Of The Biological Filter Using Corrugated Electric Cables	57
	Media	
Table (4-10) CODs Concentration In Influent And Effluent, And Cods Removal	
	Efficiency Of The Biological Filter Using Corrugated Electric Cables	58
	Media	
Table (4-11) TSS Concentration In Influent And Effluent, And TSS Removal	70
	Efficiency Of The Biological Filter Using Corrugated Electric Cables	59
Table (4-12	Media VSS Concentration In Influent And Effluent, And VSS Removal	
1 autc (4-12	Efficiency Of The Biological Filter Using Corrugated Electric Cables	60
Toble (4.12	COD Concentration In Influent And Effluent, And Cod Removal	
	Efficiency Of The Biological Filter Using Gravel Media	62
	-	
Table (4-14	CODs Concentration In Influent And Effluent, And Cods Removal	63
	Efficiency Of The Biological Filter Using Gravel Media	
Table (4-15	TSS Concentration In Influent And Effluent, And TSS Removal	64
	Efficiency Of The Biological Filter Using Gravel Media	0.
Table (4-16	b) VSS Concentration In Influent And Effluent, And VSS Removal	65
	Efficiency Of The Biological Filter Using Gravel Media	03
Table (4-17) COD Concentration In Influent And Effluent, And Cod Removal	66
	Efficiency Of The Riological Filter Using Sponge Media	66

Table (4-18) CODs Concentration In Influent And Effluent, And Cods Removal Efficiency Of The Biological Filter Using Sponge Media	67
Table (4-19)TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Sponge Media	68
Table (4-20) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Sponge Media	69
Table (4-21) COD Concentration In Influent And Effluent, And Cod Removal Efficiency Of The Biological Filter Using Plastic Media	71
Table (4-22) CODs Concentration In Influent And Effluent, And Cods Removal Efficiency Of The Biological Filter Using Plastic Media	72
Table (4-23) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Plastic Media	73
Table (4-24) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Plastic Media	74
Table (4-25) COD Concentration In Influent And Effluent, And COD Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables Media	75
Table (4-26) CODs Concentration In Influent And Effluent, And CODs Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables	76
Media Table (4-27) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables Media	77
Table (4-28) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables	78
Media Table (4-29) COD Concentration In Influent And Effluent, And COD Removal Efficiency Of The Biological Filter Using Gravel Media	80
Table (4-30) CODs Concentration In Influent And Effluent, And CODs Removal Efficiency Of The Biological Filter Using Gravel Media	81
Table (4-31) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Gravel Media	82
Table (4-32) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Gravel Media	83
Table (4-33) COD Concentration In Influent And Effluent, And COD Removal Efficiency Of The Biological Filter Using Sponge Media	84
Table (4-34) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Sponge Media	85
Table (4-35) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Sponge Media	86
Table (4-36) COD Concentration In Influent And Effluent, And COD Removal Efficiency Of The Biological Filter Using Plastic Media	88

Table (4-37) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Plastic Media	88
Table (4-38) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Plastic Media	89
Table (4-39) COD Concentration In Influent And Effluent, And Cod Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables	91
Media Table (4-40) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables	92
Media Table (4-41) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Corrugated Electric Cables Media	93
Table (4-42) COD Concentration In Influent And Effluent, And Cod Removal Efficiency Of The Biological Filter Using Gravel Media	94
Table (4-43) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Gravel Media	95
Table (4-44) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Gravel Media	95
Table (4-45) Average COD Removal Efficiency Of The Biological Filters For The Used Four Selected Media	98
Table (4-46) Average Cods Removal Efficiency Of The Biological Filters For The Used Four Selected Media	99
Table (4-47) Average TSS Removal Efficiency Of The Biological Filters For The Used Four Selected Media	101
Table (4-48) Average VSS Removal Efficiency Of The Biological Filters For The Used Four Selected Media	103
Table (4-49) The Samples Were Taken To Represent The Shock Load Effect On The Effluent Concentrations	104
Table (4-50) COD Concentration In The Effluent From The Biological Filter Using Different Media	104
Table (4-51) TSS Concentration In The Effluent From The Biological Filter Using Different Media	106
Table (4-52) VSS Concentration In The Effluent From The Biological Filter Using Different Media	107
Table (4-53) COD Concentration In Influent And Effluent, And Cod Removal Efficiency Of The Biological Filter Using Sponge Media	109
Table (4-54) CODs Concentration In Influent And Effluent, And Cods Removal Efficiency Of The Biological Filter Using Sponge Media	110
Table (4-55) BOD Concentration In Influent, Effluent And Removal Efficiency Of The Biological Filter Using Sponge Media	111

Table (4-57) TKN Concentration In Influent And Effluent, And TKN Removal Efficiency Of The Biological Filter Using Sponge Media	113
Table (4-58) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Sponge Media	114
Table (4-59) Ammonia Concentration In Influent And Effluent, And Ammonia Removal Efficiency Of The Biological Filter Using Sponge Media	115
Table (4-60) Phosphorous Concentration In Influent And Effluent, And Phosphorous Removal Efficiency Of The Biological Filter Using	117
Table (4-61) COD Concentration In Influent And Effluent, And Cod Removal Efficiency Of The Biological Filter Using Plastic Media	119
Table (4-62) CODs Concentration In Influent And Effluent, And Cods Removal Efficiency Of The Biological Filter Using Plastic Media	120
Table (4-63) BOD Concentration In Influent, Effluent And Removal Efficiency Of The Biological Filter Using Plastic Media	121
Table (4-64) TSS Concentration In Influent And Effluent, And TSS Removal Efficiency Of The Biological Filter Using Plastic Media	122
Table (4-65) TKN Concentration In Influent And Effluent, And TKN Removal Efficiency Of The Biological Filter Using Plastic Media	123
Table (4-66) VSS Concentration In Influent And Effluent, And VSS Removal Efficiency Of The Biological Filter Using Plastic Media	124
Table (4-67) Ammonia Concentration In Influent And Effluent, And Ammonia Removal Efficiency Of The Biological Filter Using Plastic Media	125
Table (4-68) Phosphorous Concentration In Influent And Effluent, And Phosphorous Removal Efficiency Of The Biological Filter Using Plastic Media	126
Table (4-69) Average Removal Efficiency Of The Biological Filters In Terms Of The Various Parameters Using The Two Selected Media	127
<u>List of Figures</u>	
Figure	Page
Chapter II: Literature Review	3-25
Figure (2-1) Rotating Biological Contactors	8
Figure (2-2) Downflow Filter	10
Figure (2-3) Upflow Filter Figure (2-4) Machanisms Of Pallutants Paragual	11
Figure (2-4) Mechanisms Of Pollutants Removal	22
Chapter III: Materials And Methods Figure (2/1) Section Of The System, Units Of The Leb Seels And Bilet Seels	27-46
Figure (3/1) Section Of The System, Units Of The Lab-Scale And Pilot-Scale Setups, And The Location Of Sampling Points.	29

Table (4-56) TSS Concentration In Influent And Effluent, And TSS Removal

Efficiency Of The Biological Filter Using Sponge Media

112