Phenotypic and Molecular Detection of Klebsiella pneumonia Carbapenemase in Enterobacteriaceae

Ehesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Shereen Mahmoud Abdou

M.B., B.Ch. Faculty of Medicine - Mansoura University

Supervised By

Professor/ Nevine Nabil Kassem

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor/ Samia Abdou Girgis

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Doctor/ Hala Badr El-Din Ali

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2014

First and foremost, I feel always indebted to ALLAH, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to **Professor**/Nevine Nabil Kassem, Professor of Clinical and Chemical Pathology, Faculty of Medicine – Ain Shams University, for her sincere help, constant encouragement, constructive criticism, and valuable guidance; I was truly honoured to work under her supervision.

I wish also to express my great gratitude and utmost appreciation to **Doctor/Samia Abdou Girgis**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine – Ain Shams University for her valuable suggestions and instructions, the effort and time she has devoted to the fulfillment of this work

I feel deeply indebted to **Doctor**/ **Hala Badr El-Din Ali**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine – Ain Shams University, for her active cooperation, deep concern and enthusiastic encouragement during the progress of this work.

I owe special thanks to my Family for their care, patience and continuous encouragement.

Shereen Mahmoud Abdou

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the Work	3
Review of Literature	
- β-lactam Antibiotics and β-lactamases	4
- Carbapenems and Carbapenemases	43
- Klebsiella Pneumoniae Carbapenemase (KPC)	55
- Laboratory Detection of KPC in Enterobacteria	ceae65
- Treatment of infections with KPC-producing Enterobacteriaceae	99
- Prevention and Control of infections with KPC producing Enterobacteriaceae	
Materials and Methods	109
Results	128
Discussion	144
Conclusion	151
Recommendations	152
Summary	153
References	155
Arabic Summary	

List of Abbreviations

Abb.	Full item
ABC	Adenosine triphosphate (ATP)-binding cassette
AcrAB	Acriflavine resistance protein A and B
AK	Amikacin
ALG	Alginate
AMC	Amoxicillin- clavulanic acid
AmpC	Ambler Class C
APB	aminophenyl-boronic acid
BA-CD	Boronic acid combined disc test
bla	Beta -lactamase
BMD	Broth microdilution
CAZ	Ceftazidime
CDC	Center for Disease Control and Prevention
CFP	Cefoperazone
CIP	Ciprofloxacin
CLSI	Clinical Laboratory Standards Institute
CM	Cytoplasmic membrane
CP	Carbapenemase-producing
CPD	Cefpodoxime
CRO	Ceftriaxone
CTX	Cefotaxime
CTX-Ms	Cefotaximase
ddNTP	dideoxynucleotide triphosphate
DDST	Double disc synergy test
E. coli	Escherichia coli
E-test	Epsilometer test
EDTA	Ethylene-diamine-tetra-acetic acid
ESBLs	Extended-spectrum β- lactamases
EU	European Union
F	Nitrofurantoin
FEP	Cefrpime
FOX	Cefoxitin
GES	Guiana extended spectrum beta- lactamase
GIcNAc	N-acetylglucosamine
GIM	German imipenemase
HEPES	N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
IBC	Integron borne cephalosporinase
ICU	Intensive care unit
IEF	Isoelectric focusing

Abb.	Full item
IM	inner membrane
IMP	Inner membrane proteins
IND	indologenes
IPM	Imipenem
<i>K</i> .	Klebsiella
KPC	Klebsiella pneumoniae carbapenemase
LPS	Lipopolysaccharide
LTA	Lipoteichoic acid
MATE	Multidrug and toxic compound extrusion
MBLs	Metallo-ß-lactamases
MB-PCR	molecular beacons-polymerase chain reaction
MDR	Multi drug resistant
MEM	Meropenem
MFP	membrane fusion protein
MFS	Major facilitator superfamily
MHT	Modified Hodge Test
MIC	Minimum inhibitory concentration
MRSA	Methicillin resistant Staphylococcus aureus
MurNAc	N-acetylmuramic acid
NAG	N-acetylglucosamine
NAM	N-acetylmuramic acid
NDM	New Delhi metallo-\u00e3-lactamase
NMC	Non metalloenzyme carbapenemase
OM	Outer membrane
OMP	Outer membrane proteins
OmpC	Outer membrane protein C
OmpF	Outer membrane protein F
Omp K35	Osmoporins of klebsiella pneumoniae
OXA	Oxacillin
OXA-MHT	Oxacillin – Modified Hodge Test
P.	Pseudomonas
PBPs	Penicillin Binding Proteins
PC1	penicillinases 1
PCR	Polymerase Chain Reaction
PFGE	Pulsed- Field Gel Electrophoresis
PG	Peptidoglycan
pIs	Isoelecteric points
Qnr	quinolones resistance
RND	Resistance-nodulation-cell-division
<i>S</i> .	Streptococcus

Abb.	Full item
S. marcescens	Serratia marcescens
SHV	sulfhydryl variable
SIM	Seoul imipenemase
SME	Serratia marcescens enzyme
SMR	Small multidrug resistance
SPM	San Paulo metallo-β-lactamase
Spp.	Species
SXT	Trimethoprim-Sulfamethoxazole
TEM	Temoneira (name after the patient providing the first
	sample)
TZP	Tazobactam
US	United States
UTI	Urinary tract infection
VIM	Verona integron-encoded metallo-β-lactamase
Zn	Zinc

List of Tables

Cable No	v. Eitle	Page No.
Table (1):	Groups and examples of β-lactam antir agents	
Table (2):	Classification schemes for β -lactamas	es20
Table (3):	Old and new β-lactamase inhibite specific activity against different class lactamases	ses of β-
Table (4):	Carbapenem breakpoints	69
Table (5):	Criteria for interpreting PFGE pattern	s91
Table (6):	Effects of genetic events on PFGE f	•
Table (7):	Primers sequences used in this study	112
Table (8):	Components of PCR mixture for each	25 μl:120
Table (9):	Distribution of the isolates accordin type of specimen.	~
Table (10):	Distribution of the isolates accordin department.	
Table (11):	Distribution of the 12 positive bla_{kpc} according to the department and the specimen.	type of
Table (12):	Results of MHT compared to PCR	131
Table (13):	Results of boronic acid test compared	to PCR131
Table (14):	Diagnostic performance of modified He and boronic acid test compared to detection of KPC in carbapenem re <i>Enterobacteriaceae</i> isolates	PCR for esistance

List of Tables (Cont...)

Cable No	v. Citle	Page No.
Table (15):	Relationship between results of IPM PCR for detection of KPC	
Table (16):	Relationship between results of ME and PCR for detection of KPC	
Table (17):	Relationship between results of ETP/PCR for detection of KPC	
Table (18):	Relationship between results of FEP/PCR for detection of KPC	
Table (19):	Relationship between results of FOX PCR for detection of KPC	
Table (20):	Relationship between results of boro test using different antibiotic substra PCR for detection of KPC	ates and

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Schematic presentation of β-lactam ar	ntibiotics5
Figure (2):	Chemical structures of β -lactams (1-4	.)6
Figure (3):	Structure of the cell walls of <i>S. aureu P. aeruginosa</i> (b). LTA, lipoteiche LPS, lipopolysaccharide	oic acid;
Figure (4):	Penicillin-sensitive enzymes involve wall biosynthesis	
Figure (5):	Illustration of the outer membra wall and plasma membrane of a positive & Gram-negative bacterium	Gram-
Figure (6):	Sites of action and potential mecha- bacterial resistance to antimicrobial ag	
Figure (7):	The opening of the β -lactam penicillins	-
Figure (8):	Outer wall of Gram-positive and negative species and detail of channels of Gram-negative bacteria	f porin
Figure (9):	β-Lactamase found in bacteria a classification and synthesis, chromosomally or plasmid mediated	whether
Figure (10):	Structure of the main groups of beta antibiotics (the β-lactam ring is de by the dotted line)	signated
Figure (11):	Schematic diagram of penicillin carbapenem (imipenem), cep (cefoxitin), a cephalosporin (cephalot bicine (buffer molecule)	hamycin hin), and

List of Figures (Cont...)

Figure No.	Citle	Page No.
Figure (12):	Geographic distribution of KPC wo	orldwide61
Figure (13):	Susceptibility test of a KPC-produpneumoniae using the E-test method	_
Figure (14):	Potentiation of carbapenems by Al pneumoniae producing KPC-2	
Figure (15):	Results of DDST with ETP (left APB (300 µg per disk; blank middle and IPM (right disks) and results of assay with IPM (left disks) and IAPB (300 µg per disk; right disks).	le disks), BA-CD PM plus
Figure (16):	Modified Hodge test used for screed carbapenemase-producing bacteriated A is a KPCproducer and positive modified Hodge test. Isolates B, C E do not produce a carbapenemase negative by the test	Isolate by the D, and and are
Figure (17):	Results obtained with the modified test (MHT), the boronic acid-base (BA-MHT), and the OXA-base (OXA-MHT) with ETP plus OXA µg per disk; left disks), ETP (centra and ETP plus APB (3,000 µg per disks) for representative (<i>K.pneumoniae</i> M9171 [producing	ed MHT d MHT A (1,000 ral disks) isk; right isolates
Figure (18):	Proposed flow chart for scree suspected carbapenemase-producin of <i>Enterobacteriaceae</i>	g strains
Figure (19):	Dye terminator cycle sequencing of	f DNA89
Figure (20):	Steps of Pulsed-field gel electropho	oresis90

List of Figures (Cont...)

Figure No.	Citle	Page No.
Figure (21):	Schematic diagram showing the ch the PFGE pattern of an isolate as a various genetic events	result of
Figure (22):	CHROMagar KPC shows <i>E.coli</i> a red colonies, <i>Klebsiella spp.,Ente spp.</i> and <i>Citrobacter spp</i> , as meta and <i>Pseudomonas spp.</i> as transluce colonies	robacter llic blue nt cream
Figure (23):	QIAxcel system	113
Figure (24):	Phenotypic carbapenemase detection modified Hodge test (MHT) shot positive clinical strain with clover indentation.	owing 3 leaf like
Figure (25):	Phenotypic carbapenemase detection modified Hodge test (MHT), A is a MHT. B and C are negative MHT	positive
Figure (26):	Boronic acid disk test without(a) boronic acid (b)	
Figure (27):	Sample separation process us QIAcel system	
Figure (28):	PCR results for ten samples	125
Figure (29):	QIAxcel reading for PCR reaction showing +ve result for KPC gene.	•
Figure (30):	Relationship between results of II and PCR for detection of KPC	
Figure (31):	Relationship between results of Mand PCR for detection of KPC	EM /BA

List of Figures (Cont...)

Figure No.	Eitle	Page No.
Figure (32):	Relationship between results of and PCR for detection of KPC	
Figure (33):	Relationship between results of and PCR for detection of KPC	
Figure (34):	Relationship between results of and PCR for detection of KPC	

Introduction

arbapenems are commonly used to treat life-threatening infections caused by multidrug-resistant Enterobacteriaceae; these drugs represent the last line of defense against serious or invasive infection (Pillai et al., 2009). During the last decade, Carbapanem resistance has emerged among clinical isolates of the Enterobacteriaceae family, and this is increasingly attributed to the production of the β-lactamases capable of hydrolyzing carbapenems. Among those enzymes, a new type of Ambler class A β-lactamase, the *Klebsiella pneumoniae* Carbapenemaze (KPC), which has been rapidly spreading among K. pneumoniae isolates and other Enterobacteriaceae (Tsakris et al., 2009b).

Treatment of infection caused by KPC bacteria is particularly worrisome as the carbapenems are often agents of the last resort for resistant Gram-negative infections. The optimal treatment of infections caused by KPC bacteria is not well established and clinical outcome data remain sparse (*Hirsch and Tam, 2010*). So the rapid global spread of *Klebsiella pneumoniae* that produces *K.pneumoniae* carbapenemase (KPC), is of major concern (*Pillai et al., 2009*).

Laboratory diagnostic methods for *blaKPC* include susceptibility testing for meropenem, imipenem, and ertapenem which are determined by broth microdilution, disk diffusion, Etest, Microscan, and the Vitek 2 test; also phenotypic methods as modified Hodge test could be used. Similarly, CHROM agar KPC has shown good sensitivity and specificity for screening (*Lolans et al., 2010*).

Phenotypic methods utilizing boronic acid disc tests have demonstrated promising results and appear practical for use in clinical microbiology laboratories (*Hirsch and Tam*, 2010). Boronic acid compounds are serine-type B-lactamase inhibitors that were employed originally for the detection of class C plasmidic AmpCs in *Enterobacteroaceae*. Recently, they have also been evaluated for the differentiation of KPC-producing *Enterobacteriaceae*. In that respect, combined-disc tests using carbapenems with and without phenylboronic acid (PBA) have been proposed as the most accurate phenotypic tests for detecting KPC production (*Pournaras et al.*, 2010).

The modified hodge test was also evaluated for detection of KPC-mediated resistance. This is a phenotypic test which could be used to determine if reduced susceptibility to carbapenems is mediated by a carbapenemase. The test is demonstrated 100% sensitivity and specificity for detection of KPC activity (*Doi et al.*, 2008).

The gene encoding the KPC enzyme is usually flanked by transposon-related sequences and has been identified on conjugative plasmids; therefore, the potential for dissemination is significant. Isolates that acquired this enzyme are usually resistant to several other classes of antimicrobial agents used as treatment options. So accurate laboratory identification of KPC-producing clinical isolates will be critical for limiting the spread of this resistance mechanism. Nucleic acid detection methods as the real-time, rapid-cycle PCR testing are fast, accurate means of identifying *blaKPC* (*Anderson et al.*, 2007).