The Relationship Between Trace Elements And Hepatic Encephalopathy In Egyptian Patients With Liver Cirrhosis

Thesis submitted for partial fulfillment of master degree in internal medicine

By

Mohamed Hamad Mohamed Gad El-kareem M.B,B.CH Sohag University

Under The Supervision of

Prof. Dr. Hanan Mahmoud Mohamed Badawy

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Amal Shawky Mohamed Bakir

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Dr. Osama Ashraf Ahmed

Lecturer of Internal Medicine
Faculty of Medicine • - Ain Shams University

Faculty of Medicine
Ain Shams University
Y. 17

Acknowledgement

First and foremost thanks to Allah, the most merciful. I would like to dedicate this work to my family who was my guide, my tutor, my support and to whom I owe all my success and achievements.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Hanan Badawy**, for continuous help, patience and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor for me to work under her supervision.

I wish to express my supreme gratitude to **Prof. Dr. Amal Shawky** for her kind assistance, supervision, continuous encouragement and for being kind enough to follow closely every step in the whole work.

With great pleasure, I would like to offer too much greetings to the active and faithful **Dr. Osama Ashraf** for his advice, directions and revision of the whole study.

Mohamed Hamad 2013

CONTENTS

Acknowledgement ······I
List of tablesIII
List of figures·······V
List of abbreviations X
• Introduction 1
• Aim of the work7
• Review of literature
Chapter (1): Hepatic Encephalopathy 8
Chapter (2): Trace Elements 120
• Patients and Methods 219
• Results232
• Discussion
• Summary and Conclusion 321
• Recommendations
• References 325
Arabic summary

List of tables

Table	Title	page
1.1	Prevalence of hepatitis B serologic markers among women of childbearing age and different age groups by country prior to the introduction of HepB vaccine into EPI	34
1.2	Estimated number of persons with HCV infection and cost of treating patients with chronic infection based on HCV prevalence by country	35
1.3	Mortality in Egypt due to liver disease, 2001-2006	36
1.4	Proposed nomenclature of hepatic encephalopathy according to Ferenci et al.	89
1.5	Main precipitating factors of hepatic encephalopathy and their possible mechanism	90
1.6	Stages of hepatic encephalopathy	92
1.7	Main differential diagnoses of hepatic encephalopathy in cirrhotic	
	patients	94
1.8	Diagnostic criteria for MHE	96
1.9	Diagnostic methods for MHE	97
1.10	Patients with cirrhosis or porto-systemic shunts that should undergo tests for MHE	98
1.11	Level of consciousness with the Glasgow Coma Scale	102
1.12	West-Haven criteria for hepatic encephalopathy	103
2.1	Recommended dietary allowances (RDAs) for zinc by life stage group	
	and gender	169
2.2	Recommended dietary allowance for copper	205
3.1	Child-Turcotte-Pugh (CTP) score – for classification of liver dysfunction	221
3.2	Grading of severity of liver disease according to CTP score and	224
2.2	correlation with mortality	221
3.3	Standard atomic absorption conditions for the studied trace elements	224
3.4	Components and concentrations of reagents in the used ammonia kit	229
4.1	Descriptive statistics of parametric variables in cirrhosis with HE group	233
4.2	Descriptive statistics of parametric variables in cirrhosis without HE	224
4.2	group Descriptive statistics of parametric variables in control group	234
4.3	Descriptive statistics of parametric variables in control group	235
4.4	Descriptive statistics of non-parametric variables in cirrhosis with HE group	236
4.5	Descriptive statistics of non-parametric variables in cirrhosis without	
	HE group	237
4.6	Descriptive statistics of non-parametric variables in control group	238
4.7	Comparison between the three studied groups as regards the age	240

4.8	Comparison between the three studied groups as regards the sex (Or the association between gender and the three studied groups)	241
4.9	Comparison between gender and the three studied groups as regards the parametric	4 71
	routine laboratory data	242
4.10	Comparison between cirrhosis with HE and without HE groups as	
	regards the parametric routine laboratory data	243
4.11	Comparison between the three studied groups as regards the non-	
	parametric routine laboratory data	244
4.12	Comparison between cirrhosis with HE and without HE groups as	
	regards the non-parametric routine laboratory data	246
4.13	Comparison between the three studied groups as regards the trace	24
	elements and ammonia	247
4.14	Comparison between cirrhosis with HE and without HE groups as	240
4 1 5	regards the trace elements and ammonia	248
4.15	Comparison between cirrhosis with HE and without HE groups as	249
4.16	regards the Child–Turcotte–Pugh (CTP) Score Comparison between different classes of patients of circhosis with UE	249
4.10	Comparison between different classes of patients of cirrhosis with HE group according to Child–Turcotte–Pugh classification as regards the	
	trace elements and ammonia	250
4.17	Comparison between different classes of patients of cirrhosis without	250
T•1/	HE group according to Child–Turcotte–Pugh classification as regards	
	the trace elements and ammonia	251
4.18	Comparison between child classes of cirrhotic patients (both with and	
	without HE) as regards trace elements and ammonia	252
4.19	Comparison between different classes of patients of cirrhosis with HE	
	group according to presence or absence of ascites as regards the trace	
	elements and ammonia	253
4.20	Comparison between classes of cirrhotic patients (both with and without	
	HE) according to presence or absence of ascites as regards the trace	
	elements and ammonia	254
4.21	Comparison between different classes of cirrhosis with HE group	
	according to amount of ascites (grade of ascites) as regards to the trace	255
4.00	elements and ammonia	255
4.22	Comparison between different classes of cirrhosis without HE group	
	according to amount of ascites (grade of ascites) as regards to the trace	256
1 22	elements and ammonia Comparison between classes of circulation nations (both with and without	256
4.23	Comparison between classes of cirrhotic patients (both with and without HE) according to amount of ascites (grade of ascites) as regards the	
	HE) according to amount of ascites (grade of ascites) as regards the trace elements and ammonia	257
4.24	Comparison between different HE grades of patients of cirrhosis with	431
-T.4-T	HE group according to West-Haven criteria as regards the trace	
	elements and ammonia	258

4.25	Correlation between serum manganese and total bilirubin, serum	
	albumin, prothrombin time and CTP-score in cirrhosis with HE group	259
4.26	Correlation between serum manganese and total bilirubin, serum	
	albumin, prothrombin time and CTP-score in cirrhosis without HE	
	group	260
4.27	Correlation between serum zinc and total bilirubin, serum albumin,	
	prothrombin time and CTP-score in cirrhosis with HE group	261
4.28	Correlation between serum zinc and total bilirubin, serum albumin,	
	prothrombin time and CTP-score in cirrhosis without HE group	262
4.29	Correlation between serum copper and total bilirubin, serum albumin,	
	prothrombin time and CTP-score in cirrhosis with HE group	263
4.30	Correlation between serum copper and total bilirubin, serum albumin,	
	prothrombin time and CTP-score in cirrhosis without HE group	264
4.31	Correlation between blood ammonia and total bilirubin, serum albumin,	
	prothrombin time and CTP–score in cirrhosis with HE group	265
4.32	Correlation between blood ammonia and total bilirubin, serum albumin,	
	prothrombin time and CTP–score in cirrhosis without HE group	266
4.33	Correlation between blood ammonia and trace elements in cirrhosis with	
	HE group	267
4.34	Correlation between blood ammonia and trace elements in cirrhosis	
	without HE group	268
4.35	Correlation between serum zinc and serum manganese and copper in the	
	three studied groups	269
4.36	Correlation between serum manganese and serum copper in the three	
	studied groups	270
4.37	Correlation between grade of HE and trace elements and blood ammonia	
	in cirrhosis with HE group	271
4.38	Correlation between grade of HE and total bilirubin, serum albumin,	
	prothrombin time and CTP–score in cirrhosis with HE group	272

List of figures

Figure	Title	page
1.1 1.2 1.3 1.4	Global prevalence of chronic HCV infection in 2001 Geographic distribution of chronic HBV infection HBs Ag prevalence in EMR countries Prevalence (%) of hepatitis C virus infection by country (WHO estimates)	30 31 32 33
1.5	Ammonia and urea metabolism Pole of abolish musels in ammonia metabolism in nationts	80
1.6.a	Role of skeletal muscle in ammonia metabolism in patients with liver failure	81
1.6.b	Role of skeletal muscle in ammonia metabolism in patients with liver failure	82
1.7.a	Ammonia & glutamate-glutamine cycle	83
1.7.b	The glutamate-glutamine cycle in brain	84
1.8	A pathogenetic model of cerebral ammonia toxicity and hepatic encephalopathy	85
1.9	Schematic representation of the post synaptic localization of oxidized RNA in the hyperammonemic rat brain	86
1.10	Release of Zn ⁺² from protein zinc sulphur complexes	87
2.1	Copper transport in hepatocytes, neurons, and astrocytes	198
3.1	Flame Atomic Absorption Spectrophotometer (FAAS) (SavantAA) (GBC Scientific Equipment, Australia)	223
3.2	Flameless Atomic Absorption Spectrophotometer (GFAAS) (Perkin-Elmer Model HGA 600, USA)	225
3.3	Siemens advia 1800 Chemistry Analyzer, Germany	226
4.1	Comparison between the three studied groups as regards the trace elements and ammonia	273
4.2	Comparison between child classes of cirrhosis with HE group as regards the trace elements and ammonia	274

4.3	Comparison between child classes of cirrhosis without HE group as regards the trace elements and ammonia	275
4.4	Comparison between child classes of cirrhotic patients (both with and without HE) as regards the trace elements and ammonia	276
4.5	Comparison between different classes of cirrhosis with HE group according to presence or absence of ascites as regards the trace elements and ammonia	277
4.6	Comparison between different classes of cirrhotic patients (both with and without HE) according to presence or absence of ascites as regards the trace elements and ammonia	278
4.7	Comparison between different classes of cirrhosis with HE group according to amount of ascites (grade of ascites) as regards to the trace elements and ammonia	279
4.8	Comparison between different classes of cirrhosis without HE group according to amount of ascites (grade of ascites) as regards to the trace elements and ammonia	280
4.9	Comparison between different classes of cirrhotic patients (both with and without HE) according to amount of ascites (grade of ascites) as regards to the trace elements and ammonia	281
4.10	Comparison between different HE grades of cirrhosis with HE group according to West-Haven criteria as regards the trace elements and ammonia	282
4.11	Correlation between serum zinc and serum albumin in cirrhosis with HE group	283
4.12	Correlation between serum copper and total bilirubin in cirrhosis with HE group	284
4.13	Correlation between blood ammonia and total bilirubin in cirrhosis with HE group.	285

4.14	Correlation between blood ammonia and serum albumin in cirrhosis with HE group	286
4.15	Correlation between blood ammonia and serum zinc in cirrhosis with HE group	287
4.16	Correlation between blood ammonia and serum zinc in cirrhosis without HE group	288
4.17	Correlation between blood ammonia and serum copper in cirrhosis with HE group	289
4.18	Correlation between blood ammonia and serum manganese in cirrhosis with HE group	290
4.19	Correlation between serum manganese and serum copper in cirrhosis with HE group	291
4.20	Correlation between grade of HE and serum copper in cirrhosis with HE group	292
4.21	Correlation between grade of HE and blood ammonia in cirrhosis with HE group	293
4.22	Correlation between grade of HE and total bilirubin in cirrhosis with HE group	294

List of abbreviations

HE Hepatic encephalopathy

RNA Ribonucleic acid

MRI Magnetic resonance imaging

mPT Mitochondrial permeability transition

CNS Central nervous system
GABA Gamma amino butyric acid
HRQOL Health-related quality of life

EEG Electroencephalogram

MHE Minimal hepatic encephalopathyOHE Overt hepatic encephalopathy

HBV Hepatitis B virusHCV Hepatitis C virus

HCC Hepatocellular carcinomaWHO World health organizationDALYs Disability-adjusted life years

EPI Expanded programme on immunization

DNA Deoxy ribonucleic acid

HBeAg Hepatitis B envelope antigen

PAT Parenteral antischistosomal therapy **MOHP** Ministry of health and population

HBsAg Hepatitis B surface antigen

EDHS Egypt demographic and health survey

HIV Human immunodeficiency virus

HAART Highly active anti-retroviral therapy

ARE Arab Republic of Egypt
CHB Chronic hepatitis B
ALT Alanine transaminase
TB Tubercle bacillus

EMR Eastern mediterranean region

Anti-HBc Antibody to hepatitis B core antigen

US United states

Anti-HCV Antibody to hepatitis C virus **PAG** Phosphate-activated glutaminase

TIPS Transjugular intrahepatic portosystemic shunts

pNH(3) Partial pressure of ammonia

ALF Acute liver failure

cGMP cyclic guanosine monophosphate

PDE-5 Phosphodiesterase-5

EAAT-2 Excitatory amino acid transporter-2

NMDA N-methyl-D-aspartate

mGluRs Metabotropic glutamate receptors

GLT-1 Glutamate transporter-1

cAMP cyclic adenosine monophosphate

ATP Adenosine triphosphate ROS Reactive oxygen species

SNr substantia nigra pars reticulata

VMT Ventromedial thalamus

PCS Portacaval shunt

GS Glutamine synthetase

GLNase Glutaminase NS Neurosteroids

THDOC Tetrahydrodeoxycorticosterone

NSAID Non-steroidal anti-inflammatory drugs

TNF Tumour necrosis factor

IL-1 Interleukin-1

AChE Acetylcholinesterase

ACh Acetylcholine

ChAT Choline-acetyltransferaseRNS Reactive nitrogen speciesNKCC1 Na-K-Cl-cotransporter-1

PBR Peripheral benzodiazepine receptor

PTN Protein tyrosine nitration

GAPDH Glyceraldehydes-3-phosphate dehydrogenase

L-LTP Late phase long-term potentiationTACE Transarterial chemoembolization

OTC Ornithine transcarbamylase

CHESS Clinical hepatic encephalopathy staging scale

ACG American College of Gastroenterology

LOLA L-Ornithine-L-Aspartate

MARS Molecular adsorbent recirculating system

NRC National research council

RDA Recommended daily allowance

ESADDI Estimated safe and adequate daily dietary intake

SMR Standardized mortality ratio

MMT methylcyclopentadienyl manganese tricarbonyl

CRIP cysteine-rich intestinal protein

MT Metallothionein

FDA Food and Drug Administration

ATSDR Agency for Toxic Substances and Disease Registry

EPA Environmental Protection Agency

IOM Institute of Medicine

NIOSH National Institute for Occupational Safety and Health

Introduction

The liver and brain interact in numerous ways. The liver supplies nutrients to the brain and removes toxic substances that are harmful to the brain's nerve cells. Liver dysfunction can cause disturbance of brain function and even contribute to brain damage (Butterworth RF, a).

Hepatocerebral disorders are serious neuropsychiatric conditions that result from liver failure. These disorders are characterized neuropathologically by varying degrees of neuronal cell death in basal ganglia, cerebellum, and spinal cord, and include clinical entities such as Wilson's disease, post-shunt myelopathy, hepatic encephalopathy, and acquired non-Wilsonian hepatocerebral degeneration. Pathophysiologic mechanisms responsible for cerebral dysfunction and neuronal cell death in hepatocerebral disorders include ammonia toxicity and neurotoxic effects of metals such as copper, manganese, and iron (Butterworth RF,).

Hepatic encephalopathy is a complex and potentially reversible neuropsychiatric syndrome complicating acute or chronic liver disease. Clinical manifestations are multiple and varied, ranging from minimal neurological changes to coma. Ammonia is the main toxic substance involved in the pathogenesis of hepatic encephalopathy, although other mechanisms, such as modifications of the blood-brain barrier, disruptions in neurotransmission and abnormalities in **GABAergic** and benzodiazepine pathways may also play a role. The identification and treatment of precipitating factors is crucial in the management of patients with hepatic encephalopathy (Bismuth M et al.,).

١

Hepatic encephalopathy (HE) was classified as: Encephalopathy type A (associated with acute liver failure), type B (associated with portosystemic bypass) and type C (associated with liver cirrhosis) (Quero Guillen JC et al.,). Type C is further classified into "categories: Episodic HE (precipitated, spontaneous or recurrent), persistent HE (mild, severe or treatment-dependant) and minimal HE (also called subclinical HE) (Ferenci P et al.,).

Hepatic encephalopathy (HE) is a major complication encountered in nearly half of the patients with liver cirrhosis (Romero-Gómez M,).

It is estimated to occur in $\checkmark \cdot \%$ to $5 \circ \%$ of patients with liver cirrhosis and in $\cancel{\cdot \%}$ to $\cancel{\cdot \%}$ of patients with transjugular intrahepatic portosystemic shunts. It can be seen in cancer patients due to multiple factors. Early diagnosis and treatment are important but can be challenging, especially in mild forms with subtle findings (**Eroglu Y and Byrne WJ**,).

Ammonia plays a key role in the pathogenesis of hepatic encephalopathy. One consequence of ammonia action on the brain is astrocyte swelling, which triggers the generation of oxidative/nitrosative stress at the level of NADPH oxidase, nitric oxide synthases and the mitochondria. Consequences of the ammonia-induced oxidative/nitrosative stress response are protein modifications through nitration of tyrosine residues and oxidation of astrocytic and neuronal RNA. Nitrosative stress also mobilizes zinc from intracellular stores with impact on gene expression. These alterations may at least in part mediate cerebral ammonia toxicity through disturbances of intracellular and intercellular signaling and of synaptic plasticity. RNA oxidation offers a novel explanation for multiple disturbances of neurotransmitter systems