

Ain Shams University Faculty of Science

Modelling, Simulation and Implementation of a Robotic System for Wide Range of Applications

Thesis

In partial fulfillment of the requirements for the degree of doctorate of Science in physics

Submitted To

Faculty of Science - Ain Shams University

Presented By

Mohammed Abdul Malek Abdul Rahman AL-Saadi

Ph.D. (Physics - Electronics Group)

Supervisors

Prof. Dr. Ashraf Shamseldin Yahia Prof. Dr. Hatem M. Elborai

Professor of Electronics Physics Department Faculty of Science Ain Shams University Professor, EM of Electronics Physics Department Faculty of Science Ain Shams University

Physics Department, Faculty of Science Ain Shams University

APPROVAL SHEET

Title of the Ph.D. Thesis

Modelling, Simulation and Implementation of a Robotic System for Wide Range of Applications

Name of the Candidate

Mohammed Abdul Malek Abdul Rahman AL-Saadi

(Signatura)

Cuparvigara

<u>Supervisors</u>	(Signature)
Prof. Dr. Ashraf Shamseldin Yahia	()
Physics Department	
Faculty of science	
Ain Shams University	
Dr. Hatem Mohamed Mohamed Elborai	()
Physics Department	
Faculty of science	
Ain Shams University	

Title: Modelling, Simulation and Implementation of a Robotic System for Wide Range of Applications

Name: Mohammed Abdul Malek Abdul Rahman

AL-Saadi

Degree: Doctorate

Department: Physics – Electronics Group

Faculty: Science

University: Ain Shams University

Graduation Date: 1999

Master Date: 2004

Registration Date: 2011

Award Date: 2014

Acknowledgement

I would like to thank many people for their support, friendship, and encouragement indispensable for the successful completion of my thesis. Though words cannot express my gratitude, it is a pleasure for me to thank those who made this thesis possible.

First of all, I owe my deepest gratitude to **Prof. Dr. Ashraf Shamseldin Yahia**, Head of Electronics Group, Physics Department, Faculty of Science, Ain Shams University, for suggesting the novel and outstanding point of research, for helpful suggestions, continuous encouragement, valuable and fruitful discussion, criticism, detailed and valuable comments throughout this work.

Also, I am deeply indebted to **Prof. Dr. Hatem Mohamed El-Borai**. His advice, support and kind encouragement on both professional and private issues have effectively guided me through this winding way. Furthermore, he always led my papers to clear, smart and persuasive ones. Without him this thesis would not have been possible.

Moreover, my sincere thanks go to many friends and colleagues for scientific discussions, advices, and continuous support.

I would also like to thank **Omar Abdul Kareem** for their endorsement and friendship during my stay in Egypt.

Finally, and the most personal for me, I would like to thank my parents and family.

Mohammad

@G@G@G@G@G@G@G@G@G@G@G@G@G

Abstract

The development of methods for autonomous navigation of a robot in a real world environment is one of the major areas of interest for current research.

This thesis attempts to develop an autonomous robot using ultrasonic sensors (for sensing the obstacle environment) and Global Positioning System (GPS) and a digital compass (for direction and location).

This work deals with the problems of the navigation of an autonomous robot with known environment that used in different applications such as mine detector. A navigation method based on the behavior of the robot that has been developed, is achieved by means of Fuzzy Logic Control "F.L.CONTROLLER".

This thesis describes the design and development of a low-cost autonomous robot that is targeted. After implementation, we evaluate the performance of the developed robot. Several problems had been identified and possible solutions are proposed.

A design controller is a main component of the proposed system, which has three functions: motion control, obstacles avoidance and self-navigation. The proposed controller is responsible for the navigation of the mobile robot after generating a road with a current point and goal point. As well, it enables the robot to work successfully in the bearing of various obstacle environments with any user built maps.

The complete system operations were simulated using MATLAB software package M-file was created and run to get the data used to plot car position (Lat., Lon.), a car heading (θ_I) and car velocity. Moreover, we

achieved the complete comparison between the data got from the simulation with practical data collected during the actual run of car for 70 Sec.

The the differences between simulated and practical results (data) are also illustrated; it comes out that the practical results were very close to the simulated results.

Table of Contents

			Acknowledgement	I
			Abstract	II
			Table of Contents	IV
			List of Figures	VII
			List of Tables	IX
(Chapte	er 1	Introduction and Literature Review	
1	1.1		Introduction	1
	1.2		Motivation	2
	1.3		Robotic System Objectives	4
		1.3.1	Navigation	4
		1.3.2	Obstacles Avoidance	4
		1.3.3	Path Planning of Mobile Robot	4
	1.4		Robotic System Components	5
		1.4.1	Sensor	5
		1.4.2	Controller	6
		1.4.3	Motor Driver	6
		1.4.4	Robot Communication	7
	1.5		Motion control	7
	1.6		Literature Review	8
	1.7		The Aim of Thesis	16
	1.8		The structure of this thesis	17
(Chapte	er 2	Navigation Systems	
	2.1		Introduction	18
	2.2		Robot localization	18
	2.3		Motion Planning	20
		2.3.1	Path Planning	20
		2.3.2	Path Optimization	24
	2.4		Robotic Behavior Types	25
	2.5		Mathematical Robot Model	28
		2.5.1	Robotic Wheel Design	29
		2.5.2	Differential Drive	31
	2.6		Robot Kinematics	31

2.7		Robot Dynamics	34
2.8		Obstacles Avoidance	36
Chapt	er 3	Fuzzy Logic Control "F.L.Controller"	
3.1		Introduction	39
3.2		The Fuzzy Logic Control Theory	42
3.3		Fuzzification & Membership Functions (MF)	49
	3.3.1	Triangular Membership Function	51
	3.3.2	Trapezoidal Membership Function	51
	3.3.3	Gaussian Membership Function	52
	3.3.4	Generalized Bell Membership Function	52
	3.3.5	Sigmoidal Membership Function	52
3.4		Linguistic Variables & Fuzzy Control Rules	52
3.5		Fuzzy Inference Systems (FIS)	54
3.6		Defuzzification	57
	3.6.1	Centroid of Area (COA)	58
	3.6.2	Mean Of Max (MOM) Method	58
	3.6.3	First of Maxima (FOM) Method	59
	3.6.4	Last of Maxima (LOM) Method	59
3.7		The Design For "F.L.CONTROLLER"	59
	3.7.1	Universe of Discourse	61
	3.7.2	Linguistic Variables, Values Membership	62
	3.7.3	Rule Base	65
	3.7.4	Fuzzification, Implication, Aggregation and	70
	3.7.5	"F.L.CONTROLLER" Tuning	70
Chapt	er 4	Hardware And Software Design	
4.1		Introduction	71
4.2		Hardware Description	71
	4.2.1	Robot Description	73
	4.2.2	Robot Interface	75
	4.2.3	Navigation Sensors	77
		1. GPS	78
		2. Compass	81
	4.2.4	Ultrasonic Sensor	83

		4.2.5	PIC 16F877 Microcontroller	86
		4.2.6	FPU	89
		4.2.7	DC Motors	90
		4.2.8	XBee Wireless Communication Device	91
	4.3		Software Description	93
		4.3.1	Fuzzy Logic	93
		4.3.2	Microcontroller Software	93
		4.3.3	Flow Chart of Navigation Program	94
		4.3.4	Flow Chart of Obstacles Program	97
C	hapt	er 5	Results And Discussion	
	5.1		Introduction	99
	5.2		Modelling and Simulation of Robotic System	99
	5.3		Navigation	105
		5.3.1	Navigation without Obstacle	105
		5.3.2	Navigation with Obstacle	106
	5.4		Orientation Error	108
		5.4.1	Orientation Error without Obstacle	108
		5.4.2	Orientation Error with Obstacle	109
	5.5		Comparison of Practical with Simulation	110
C	Chapter 6		Conclusions And Future Work	
	6.1		Conclusions	113
	6.2		Future Work	115
			References	117
		•		

List of Figures

Fig 2.1	Example of a complex and a simple polygon	22
Fig 2.2	Example of a non-convex and a convex polygon	22
Fig 2.3	Example of a defined area, including the working area and two obstacles	23
Fig 2.4	The environment set up assumed for the path planning process	25
Fig 2.5	Hierarchical decomposition of mobile robot behavior	26
Fig 2.6	Idealized rolling wheel	30
Fig 2.7	The differential drive mobile robot	30
Fig 2.8	Robot in a Cartesian space	31
Fig 2.9	Initial coordinates frame for mobile robot	32
Fig 2.10	Force model for mobile robot	34
Fig 3.1	A crisp MF	43
Fig 3.2	Fuzzy MF	43
Fig 3.3	Input and output of fuzzy logic system	46
Fig 3.4	Multiple-rule's effect on one output	48
Fig 3.5	Crisp output of fuzzy logic system	48
Fig 3.6	MF of input distance	50
Fig 3.7	Fuzzy logic inference system	54
Fig 3.8	Block diagram of the whole system.	61
Fig 3.9	Representation of the input fuzzy three MF of (φ)	63
Fig 3.10	Representation of the input fuzzy three MF of the distance (d)	63
Fig 3.11	Representation of the output fuzzy three MF of the ωr	64
Fig 3.12	Representation of the output fuzzy three MF of the ωl	64

Fig 3.13	The rules control of "F.L.CONTROLLER"	66
Fig 3.14	Representation the rules for two inputs & two outputs of fuzzy	66
Fig 3.15	A scenario of the robot in motion	67
Fig 3.16	Control surface of wr	69
Fig 3.17	Control surface of wl	69
Fig 4.1	Block diagram of whole system	72
Fig 4.2	The robot design	73
Fig 4.3	The board electronic components	74
Fig a-4.4	The robot when wait GPS fix	75
Fig b-4.4	GPS fix and the LED will be light up	75
Fig a-4.5	Robot determine its Position	76
Fig b-4.5	The robot waits goal point of use	76
Fig c-4.5	Robot navigates to the goal point	77
Fig 4.6	The basic function of GPS	80
Fig 4.7	SKM53 Top View	80
Fig 4.8	Compass Module	82
Fig 4.9	Ultrasonic sensor	83
Fig 4.10	Pin connections of the ultrasonic sensor	84
Fig 4.11	Timing diagram of the ultrasonic sensor	85
Fig 4.12	Pin Connection of PIC16F877	88
Fig 4.13	Pin diagram and pin description for FPU	90
Fig a-4.14	XBee-Pro Module and Pinouts	
Fig b-4.14	Typical Microcontroller Interfacing to the XBee	
Fig 4.15	The flowchart of the program	93
Fig 4.16	The flow chart of the obstacle avoidance	95

Fig 5.1	Simulation model of the autonomous robot	98
Fig 5.2	Desired velocity	99
Fig 5.3	The velocity of the robot without obstacle in simulation	100
Fig 5.4	The distance of the robot without obstacle in simulation	100
Fig 5.5	(φ) of the robot without an obstacle in simulation	101
Fig 5.6	The velocity of the robot without obstacle	103
Fig 5.7	The distance of the robot without obstacle	103
Fig 5.8	The velocity of the robot with an obstacle	105
Fig 5.9	The distance of the robot with an obstacle	105
Fig 5.10	(φ) of the robot without obstacle	107
Fig 5.11	(φ) of the robot with an obstacle	108
Fig 5.12	The different velocity of the robot without obstacle	109
Fig 5.13	The different of (d) the robot without obstacle	109
Fig 5.14	The different of (φ) of the robot without obstacle	110

List of Tables

Table 3.1	General logic AND function	44
Table 3.2	"F.L.CONTROLLER" AND function	44
Table 3.3	General logic OR function	45
Table 3.4	"F.L.CONTROLLER" OR function	45
Table 3.5	Notations for the "F.L.CONTROLLER" Input	62
Table 3.6	Notations for the "F.L.CONTROLLER" output	62
Table 3.7	Fuzzy rule for ωr of motor	65
Table 3.8	Fuzzy rule for ωl of motor	65
Table 4.1	Key Features of the PIC16F877	88

1. Introduction and Literature Review

1.1 Introduction

As time goes on, the advancement of technology keeps thriving, consequently, more and more sophisticated solutions are invented. One of the most significant fields of science which has to be taken into consideration is autonomous robot navigation. There are situations where human interference is not an option and there is no other solution but applying autonomous robots to tackle any problems such as; mine detectors, lawn mowing and move into dangerous areas [1].

A mobile robot is an automatic machine that is capable of movement in any given environment. Mobile Robots have the capability to move around in their environment with a certain degree of autonomy and are not fixed to one physical location.

Robots have a high level of autonomy in fields considered dull or dangerous and are increasingly performed by automatic systems.

Autonomous navigation is associated with the availability of external sensors that capture information about the environment through visual images, location, and distance or proximity measurements. The most common sensors are distance sensors (ultrasonic, laser, etc.) capable of detecting obstacles and of measuring the distance from the walls close to the robot path. When advanced autonomous robots navigate within indoor environments (industrial or civil buildings), they have to be endowed with the ability to move through the corridors, to follow walls, to turn corners and to enter open areas of the rooms [2].

Two basic criteria determine the success of robotics work, path planning and navigation. These criteria completely based on the environment known. Usually, this factor (environment knowledge) is the main concern for the robotics designer and programmer.

Having a detailed map with all the obstacles marked seems to be unrealistic for most situations. In many outdoor applications the robots can determine their coordinates by using GPS [3].

Outdoor navigation currently presents the biggest challenge to designers of robotic systems for many factors. These factors include an unstructured environment with uneven terrain, the instability of a sensed environment which is continually changing, and the use and integration of multiple sensors. These problems create uncertainties that cannot be solved with the use of indoor navigation algorithms that have been widely researched in the past and this gap in knowledge currently drives resources to develop future autonomous robots.

1.2 Motivation

The experiments for evaluating new ideas or algorithms for these robots are difficult, since the cost of these real autonomous robots is high. Therefore, many researchers try to work on experiments for evaluating their algorithms or methods on software simulators. However, the effects from using these simulators are not very accurate and the differences between real systems and simulators can be great. Our solution for these problems is emulation, it means that we provide the modeling or imitation to represent the behavior of the hardware of robots. In unknown and dynamic environments the system needs to discover the changes of the environment [4].

Today, several common businesses can be performed in a satisfactory manner by robots, including mine detection, lawn mowing and pool cleaning. Other tasks such as autonomous transportation and surveillance are only starting to be implemented on a small scale. Possible applications in this field are intelligent robots for services in hospitals, offices, factories or any type of hazardous area. Current gaps between the available technology and the increasing applications for these systems drive investigation towards new techniques for navigation. Still, for robotic systems to be successful at performing these tasks, autonomy in an environment that is not purposely engineered for the robot, has to be achieved.

Currently, different algorithms exist to solve the problems of robot localization and path planning for a mobile robot navigating indoors while the majority of the past research was focused on navigation in structured environments [5]. However, the problem of outdoor navigation is one that is not entirely worked out until now.

Problems encountered outdoors by a robot will be different than those encountered indoors. Type of obstacles outdoors cannot be easily categorized because of their wide variety. Therefore, outdoor autonomy is most easily achieved in the air and sea, since obstacles are less common. On the ground, several issues arise, including terrain, weather, object recognition, random moving obstacles and increase weaknesses of the sensing devices themselves. As an example, computer vision solutions have certain limitation that can make them impractical in an unstructured setting [6].

To overcome sensor limitations, robots combine the use of high end sensors such as cameras, compass, laser rangefinders, global positioning systems (GPS), Inertial Measurement Units (IMU) and sonar. These sensors, along with the hardware and software that have to accompany them, constitute a great cost in investment for the robot. This justifies the need for further research into the implementation of low cost sensors and their ability to provide the necessary information for the navigation of the robot.