

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

THE USE OF SOLAR ENERGY FOR DESALINATION OF SALTY WATER FROM THE LAKES OF FAYOUM

By

Ragab Ismail Ahmed Mourad B.Sc. Agric. Engineering Alex. Univ., 1987 M.Sc. Agric. Engineering Alex. Univ., 1992

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN AGRICULTURAL ENGINEERING

To

DEPT. OF SOILS AND WATER SCI. (AGRI. ENG.)
FACULTY OF AGRICULTURE AT EL-FAYOUM
CAIRO UNIVERSITY

BZIN

THE USE OF SOLAR ENERGY FOR DESALINATION OF SALTY WATER OF THE LAKES OF FAYOUM

Presented by RAGAB ISMAIL AHMED MOURAD

For the Degree of Doctor Philosiphy
In
Agricultural Engineering

Date: 11/6/2000

Examiners' Committee

Prof. Dr. Mohamed N. El-Awady Professor of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Prof. Dr. Ahmed El-Raie E. Suliman Professor of Agricultural Engineering, Faculty of Agriculture, Giza, Cairo University.

Prof. Dr. Mohamed H. A. El-Shakweer Professor of Soil and Water Sciences, Faculty of Agriculture, Cairo University, El-Fayoum Branch.

Prof. Dr. Samir M. Younis Professor of Agricultural Engineering, Faculty of Agriculture, Al-Shatby, Alexandria University. Signature

M.M. El Awady

A. El-Raje

El-Shetwer

Samfary

ACKNOWLEDGMENT

I wish to express my gratitude to all those who have assisted me throughout the duration of this study.

Particular thanks are due to: Professor Dr. Mohamed Hammad Atia El-Shakweer, Professor of soil science, Department of Soils and Water Sciences, Faculty of Agriculture at Fayoum, Cairo University, who proposed the research problem, his useful advice, instructive guidance and encouragement through supervision.

Thanks to Professor Dr. Samir Mohamed Younis, Professor of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Al-Shatby, Alexandria University, for his encouragement, generous assistance, useful advice, and instructive guidance through supervision.

Thanks and gratitudes are also due to Dr. Mossad Mohamed Mansour, Dr. Adel Abdel-Aziz Gharieb and all colleagues staff members and assistants in the Department of soils and water sciences, Faculty of Agriculture at Fayoum, Cairo University, for their help and providing facilities throughout the duration of preparation and conducting this work.

CONTENTS

LIST OF TABLES
LIST OF FIGURES
ABSTRACT
1. INTRODUCTION
2. REVIEW OF LITERATURES
2.1. The Sun As An Energy Source.
2.2. Uses of Solar Energy.
2.3. Definitions Of Solar Radiation.
2.3.1. Total solar radiation.
2.3.2. Diffuse radiation.
2.3.3. Irradiance
2.3.4. Irradiation or radiant exposure.
2.3.5. Radiosity or radiant exitance.
2.3.6. Emissive power or radiant self exitance
2.4. Measurements Of Solar Radiation
2.4.1. Measurements of duration of sunshine.
2.4.2. Measurements of availability of solar radiation
2.4.3. Measurements of radiation transmission through cover
and absorption by collectors
2.4.4. Stefan-Boltzmann equation.
2.5. Methods Applied For Solar Energy Use In Desalination
2.6. Principles Of Direct Solar Distillation.
2.7. Models Applied For Water Distillation
2.7.1. Harprect's mathematical model
2.7.2. Spiegler's statistical model
2.7.3. Eibling's statistical model
2.7.4. Riera's statistical model
2.7.5. Peralta's statistical model
2.7.6. Ahmed's statistical model
2.7.7. Minasian's statistical model
2.8. Water Subjected To Solar Desalination
2.9. Solar Still History

	Page
2.10. Materials Used For Solar Stills	30
2.11. Experiments Of Water Desalination	31
2.12. Identification Of The Problem Of Water/Salt Balance	
Of Fayoum Governorate	41
3. MATERIALS AND METHODS	52
3.1. Plan Of The Study	52
3.2. Materials	53
3.3. Methods	55
4. RESULTS AND DISCUSSION	61
4.1. Proposed A Modified Solar Distillation Model	61
4.2. Testing The Model Performance Variables.	63
4.3. Testing The Effects Of Meteorological Variables On The	
Distillation Model	81
4.4. Determination Of Salinity And Soluble Salts Of Input And	
Output Water Subjected To The Proposed Solr Distillation	
Model And Calculating Desalting Coefficient	90
4.5. Heat Transfer Of The Proposed Solar Distillation Model	92
4.6. Heat Balance Of The Solar Distillation Model.	98
4.7. Statistical Analysis Of The Parameters Of The Solar	
Distillation Model	103
4.8. The Economical Evaluation Of The Solar Distillation Model	110
5. SUMMARY AND CONCLOSION	114
6. REFERENCES	118

LIST OF TABLES

Table		Page
2-1	The global solar radiation at five meteorological station in Egypt	5
2-2	Composition Of Seawater, According To Goldberge et al (1971)	29
2-3	The materials used in bulding of solar stills	30
2-4	The Salinity In Irrigation Drainage Water At Fayoum Governorate	48
4-1	Effects Of Water Salinity, Brine Depth Anhd Cover Thickness On Distillation Output During Period I (winter): Dec.,96 and Jan., and Feb., 97.	64
4-2	Effects Of Water Salinity, Brine Depth Anhd Cover Thickness On Distillation Output During Period II (spring): March and April, 97	65
4-3	Effects Of Water Salinity, Brine Depth Anhd Cover Thickness On Distillation Output During Period III (summer): July and August, 97	66
4-4	The Effect Of Water Salinity On Distillation Output At Different Variables During The winter Season (Dec., 96; Jan., & Feb., 97)	67
4-5	The Effect Of Water Salinity On Distillation Output At Different Variables During The Spring Season (Mar. & Apr. 97)	68
4-6	The Effect Of Water Salinity On Distillation Output At Different Variables During The Summer Season (July & Aug. 97)	69
4-7	The Effect Of Brine Depth On Distillation Output At Different Variables During The winter Season (Dec., 96; Jan., & Feb., 97)	72

Tables	The Effect Of Deire Double On Distillation Ontone At Different	Page
4-8	The Effect Of Brine Depth On Distillation Output At Different Variables During The Spring Season (Mar. & Apr. 97)	72
4-9	The Effect Of Brine Depth On Distillation Output At Different Variables During The Summer Season (July & Aug. 97)	74
4-10	The Effect Of Cover Thickness On Distillation Output At Different Variables During The winter Season (Dec., 96; Jan., & Feb., 97)	77
4-11	The Effect Of Cover Thickness On Distillation Output At Different Variables During The Spring Season (Mar. & Apr. 97)	78
4-12	The Effect Of Cover Thickness On Distillation Output At Different Variables During The Summer Season (July & Aug. 97)	79
4-13	Effect Of Solar Radiation, Relative Humidity, Ambient Temperature And Wind Speed On Distillation Output During Period I(winter season: Dec.,96 and Jan., and Feb.,97)	85
4-14	Effect Of Solar Radiation, Relative Humidity, Ambient Temperature And Wind Speed On Distillation Output During Period II(spring season: March and April, 97).	86
4-15	Effect Of Solar Radiation, Relative Humidity, Ambient Temperature And Wind Speed On Distillation Output During Period III(summer season: July and August, 97)	87
4-16	The Chemical Analysis Of Salinity Water Samples Before And After Distillation Process	91
4-17	Effect Of Ambient, Cover, Brine, Collector And Brine-To-Cover Temperatures On Distillation Output Period I (winter season: Dec., 96 and Jan., and Feb., 97)	94
4-18	Effect Of Ambient, Cover, Brine, Collector And Brine-To-Cover Temperatures On Distillation Output Period II (spring season: March and April 97)	05

4-19	Effect Of Ambient, Cover, Brine, Collector And Brine-To-Cover Temperatures On Distillation Output Period III (summer season: July and August 97)	96
4-20	The Effect Of Pc,Ps,hfc,ha,h'c And ηc And Their Effects On Distillation Output During Period I (winter season: Dec., 96 and Jan., and Feb., 97)	104
4-21	The Effect Of Pc,Ps,hfc,ha,h'c And ηc And Their Effects On Distillation Output During Period II (spring season: March and April 97).	105
4-22	The Effect Of Pc,Ps,hfc,ha,h'c And ηc And Their Effects On Distillation Output During The Experemental Period III (summer season: July and August 97)	106
4-23	The Regression Model Procedure For Dependent Variable:Q	108
4-24	Summary Of Forward Selection Procedure For Dependent Variable:Q	108

LIST OF FIGURES

Figure		Page
2-1	Schematic Cross Section Of Basin Solar Still And Diagram Of Principal Energy.	14
2-2	Schematic diagram of a small solar still	18
2-3	Theoretical Average Productivity of Deep Basin Solar Distiller At Various Radiation Levels	21
2-4	Theoretical Hourly Variation In Performance Solar Stills Of Various Depths	21
2-5	Theoretical Effect Of Brine Depth On Solar Distiller Production Rate At High Solar Radiation Level	22
2-6	Productivity Of Laboratory Basin Distiller At Various Temp	22
2-7	Effect Of Solar Radiation On Productivity Water Distillation	23
2-8	Measured Transmission Of Solar Radiation Into A Salt Gradient Pond One Meter In Depth	33
2-9	The Location Of Study Area.	42
2-10	The Environmental Implications Of Water Management At Fayoum Governorate.	43
2-11	Fayoum Basin Water Balance	45
2-12	The Water Levels Of Lake Qarun From 1989 to 1992	46
2-13	The Distribution Map Of Soil Salinity Of Fayoum	47

Figure 2-14	Rainfall Distribution Of Study Area	Page 49
2-15	Average Of Fayoum Annual Rainfall From 1961 to 1989	50
2-16	Average Of Temperatures During The Year	51
2-17	Average Of Precipitation/Evaporation During The Year	51
2-18	Average Of Wind Speed During The Year	51
3-1	Schematic Diagrame Of The Suggested Solar Desalination Model	54
3-2	Schematic Diagrame Of A Data Acquision System For Temperatures Measuring.	58
4-1	The Interaction Effect Of Water Salinity On Distillation Output At Different Levels Of Brine depth And Cover Thickness For Three Periods Of Daylight Percentage	71
4-2	The Interaction Effect Of Brine Depth On Distillation Output At Different Levels Of Water Salinity And Cover Thickness For Three Periods Of Daylight Percentage	76
4-3	The Interaction Effect Of Cover Thickness On Distillation Output At Different Levels Of Brine depth And Water Salinity For Three Periods Of Daylight Percentage	82
4-4	Comparison Between Measured Values Of Product Water During The Experimental Periods	83
4-5	Effect Of Solar Radiation, Ambient Temperature, Wind Speed And Relative Humidity On Distillation Output During The Experimental Periods (H1, H2 and H3)	88