Study of Some Novel Adipokines in Type 2 Diabetes Mellitus

By

Dina Hamada Mahmoud Kassem

Demonstrator of Biochemistry, Faculty of Pharmacy, Ain Shams University B.Ph.Sci., Ain Shams University, 2005

A thesis submitted for the partial fulfillment of Master Degree in Pharmaceutical Sciences (Biochemistry)

Under supervision of

Dr. Hala Osman El-Mesallamy

Professor of Biochemistry
Head of Biochemistry Department
and Ex-Vice Dean for Community and
Environmental Affairs
Faculty of Pharmacy
Ain Shams University

Dr. Ashraf Ismail Amin

Professor of Clinical Pathology Head of Clinical Pathology and Laboratory Department National Institute of Diabetes and Endocrinology (NIDE)

Dr. Ebtehal El-Demerdash Zaki

Assistant Professor of Pharmacology and Toxicology
Acting Head of Pharmacology and Toxicology Department
Faculty of Pharmacy
Ain Shams University

Biochemistry Department Faculty of Pharmacy Ain Shams University (2010)

ACKNOWLEDGEMENTS

First of all I thank **ALLAH**, Who, without His help, this work would never been accomplished and may this work add to our good deeds to gain His kind mercifulness and forgiveness.

No words can repay or express my thanks and gratitude to **Dr/ Hala Osman El-Mesallamy**, Professor of Biochemistry, Head of Biochemistry Department and Ex-Vice Dean for Community and Environmental Affairs, Faculty of Pharmacy, Ain Shams University, for her great efforts, kind co-operation and continuous help to put this work in the present form. May **ALLAH** guide and support her through all her life and work.

I would like to express my gratefulness and appreciation for **Dr/ Ebtehal El-Demerdash Zaki**, Ass. Professor of Pharmacology and Toxicology and Acting Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her continuous guidance and valuable opinions that enriched this work so much. I hope her every success in her life and work.

I would like to thank **Dr/ Ashraf Ismail Amin**, Professor of Clinical Pathology, and Head of Clinical Pathology and Laboratory Department, National Institute of Diabetes and Endocrinology, for his great help, support and continuous guidance. I hope him every success in his life and work.

Also, I would like to thank **Dr/ Amany Mousa Mohamed**, Professor of Applied Statistics and Econometrics, Institute of Statistical Studies and Research, Cairo University, for her kind help in the statistical analysis.

I would like to thank all members of the Outpatient Clinic and Laboratory department, National Institute of Diabetes and Endocrinology for their friendly cooperation.

I am greatly thankful to all members of Biochemistry Department, Faculty of Pharmacy, Ain Shams University, who supported me and helped me to complete this work.

I would like to thank **Dr/ Mohamed Mostafa Kamal,** assistant lecturer of Biochemistry, Faculty of Pharmacy, Ain Shams University, for his support and encouragement during the study period. I wish him every success in his work and life.

I am greatly thankful to **General/Ahmed El-Moetesem Bellah,** for his continuous support to achieve this research and for being always willing to help. May **ALLAH** support and guide him through his life.

Finally, no words can express how I feel and my gratitude to my great **Parents**, after **ALLAH**, I owe them everything. Actually, without their love, endless support, solid faith in me and continuous encouragement, this work would have never been accomplished. I would like to thank my great father and mother for all the things they have done along the way to help and support me, and also my brother Ahmed for supporting me all the way. May **ALLAH** bless them and help me to make them happy and proud all the time.

LIST OF CONTENTS

Subjects	Page
List of abbereviations	i
List of figures	V
List of tables	vii
Publication related to the thesis	ix
1. Introduction and Aim of the work	1
2. Review of literature	3
2.1 Statistics and types of diabetes	3
2.2 Type 2 diabetes mellitus	5
2.3 Interleukin-6	22
2.4 Vaspin	27
2.5 Visfatin	29
3. Subjects and Methods	35
3.1 Subjects	35
3.2 Blood sampling	38
3.3 Methods	40
4. Results	77
5. Discussion	100
6. Summary and conclusions	123
7. Recommendations	126
8. References	127
Appendix	153
Arabic summary	

LIST OF ABBREVIATIONS

AAP	Amino antipyrine
AGE	Advanced glycation end-products
ALT	Alanine aminotransferase
ANOVA	Analysis of variance
ATP	Adenosine triphosphate
BAT	Brown adipose tissue
BMI	Body mass index
BUN	Blood urea nitrogen
CBC	Complete blood count
CCR	Chemokine receptors
CE	Cholesterol esterase
CETP	Cholesteryl ester transfer protein
CO	Cholesterol oxidase
CRP	C-reactive protein
DEA-HCI/AAP	N,N-diethylaniline-HCl/4-aminoantipyrine
DM	Diabetes mellitus
DSBmT	N,N-bis-(4-sulphobutyl)-m-toluidine-
	disodium
ELISA	Enzyme linked immunosorbent assay
ER	Endoplasmic reticulum
FAO	Fatty acid oxidation
FFA	Free fatty acids
FPG	Fasting plasma glucose
GK	Glycerol kinase
GLDH	Glutamate dehydrogenase
GLUT-4	Glucose transporter
G-6-PDH	Glucose-6-phosphate dehydrogenase
GPO	Glycerol-3-phosphate oxidase
GSIS	Glucose stimulated insulin secretion
HbA _{1C} %	Glycated hemoglobin

HDL-C	High density lipoprotein cholesterol
HK	Hexokinase
H_2O_2	Hydrogen peroxide
HOMA-IR	Homeostasis model assessment for insulin
	resistance
HPLC	High performance liquid chromatography
HSL	Hormone sensitive lipase
ICAM-1	Intercellular cell adhesion molecule
IDDM	Insulin dependent diabetes mellitus
IDF	International diabetes federation
IGT	Impaired glucose tolerance
IKK-β	Inhibitory kappa kinase-β
IL-1	Interleukin-1
IL-1R	Interleukin-1 receptor
IL-6	Interleukin-6
IRS	Insulin receptor substrate protein
JAK/STAT	Janus kinase/signal transducer and activator
	of transcription
$\mathbf{K}_{\mathbf{ATP}}$	ATP dependent potassium channel
α-KG	α-Ketoglutarate
LDH	Lactate dehydrogenase
LDL-C	Low density lipoprotein cholesterol
LPL	Lipoprotein lipase
MAPK	Mitogen activated protein kinase
MCP-1	Monocyte chemoattractant protein-1
NAD	Nicotinamide adenine dinucleotide
NADH	Reduced nicotinamide adenine dinucleotide
NADP	Nicotinamide adenine dinucleotide
	phosphate
Nampt	Nicotinamide phosphoribosyl transferase
NF-κB	Nuclear factor kappa B
NIDDM	Non-insulin dependent diabetes mellitus

NIDE	National institute of diabetes and
	endocrinology
NMN	Nicotinamide mononucleotide
Nmnat	Nicotinamide/nicotinic acid mononucleotide
	adenylyl transferase
OLETF	Otsuka Long-Evans Tokushima fatty rat
PAI-1	Plasminogen activator inhibitor-1
PBEF	Pre-B-cell colony enhancing factor
PDK-1	Phosphoinositide-dependent kinase-1
PI3K	Phosphatidyl inositol-3-kinase
PKB	Protein kinase B
PKC	Protein kinase C
POD	Peroxidase
PPAR-γ	Peroxisome proliferator activated receptor-
	gamma
P5P	Pyridoxal-5-phosphate
RAGE	Receptor for advanced glycation endproducts
RBP-4	Retinol binding protein-4
RLUs	Relative light units
ROS	Reactive oxygen species
R.P.M	Rotation per minute
SAA	Serum amyloid A
SA-HRP	Streptavidin-horseradish peroxidase
S.E.M.	Standard error of mean
Serpin	Serine protease inhibitor
SIRT-1	Sirtuin-1
SOCS	Suppressor of cytokine signaling
SREBP-2	Sterol regulatory element binding protein-2
STAT	Signal transducer and activator of transcription
TC	Total cholesterol
TCA	Tricarboxylic acid cycle
T2DM	Type 2 diabetes mellitus

TG	Triglycerides
TLR	Toll like receptor
TMB	3,3',5,5'- tetramethylbenzidine
TNF- α	Tumor necrosis factor alpha
TNFR	Tumor necrosis factor receptor
UCP-1	Uncoupling protein-1
Vaspin	Visceral adipose tissue derived serine protease
	inhibitor
VCAM-1	Vascular cell adhesion molecule
VLDL	Very low density lipoprotein
WAT	White adipose tissue
WHO	World health organization
WHR	Waist to hip ratio

LIST OF FIGURES

Figure No.	Figure Title	Page
1	Various types of diabetes mellitus	4
2	Predicted prevalence (% of population) of diabetes mellitus	5
3	Pathogenesis of T2DM	6
4	Simplified insulin signaling pathway	9
5	Insulin receptor	10
6	Insulin signaling pathway for glucose	10
7	Inter-tissue relationships in insulin resistance.	13
8	Progression of blood glucose and insulin levels in patients with T2DM	15
9	Potential cellular mechanisms for activating inflammatory signaling	17
10	inflammatory signaling Potential mechanisms for activation of inflammation in adipose tissue	19
11	Adipocytes secrete proteins with varied effects on glucose homeostasis	21
12	Adipose tissue as an endocrine organ	21
13	Mechanisms of the beneficial metabolic effects of IL-6	24
14	Autocrine, paracrine and endocrine effects of visfatin	31
15	Control of insulin secretion by visfatin	33
16	HbA _{1C} % report of a control subject	47
17	HbA _{1C} % report of a diabetic patient	48
18	Standard curve of IL-6	62

19	Standard curve of vaspin	68
20	Standard curve of visfatin	75
21	Fasting plasma glucose levels in the studied	
	groups	79
22	Whole blood HbA _{1C} % levels in the studied	
22	groups	
23	Serum insulin levels in the studied groups	82
24	HOMA-IR values in the studied groups	82
25	Lipids profile in the studied groups	84
26	Serum IL-6 levels in the studied groups	85
27	Serum vaspin levels in the studied groups	86
28	Plasma visfatin levels in the studied groups	87
	The correlation between (a) HOMA-IR and	
	BMI, (b) HOMA-IR and FPG, (c) HOMA-	
29	IR and HbA _{1C} %, (d) HOMA-IR and insulin,	
	(e) HOMA-IR and TG, (f) HOMA-IR and	
	TC	89
	The correlation between (a) IL-6 and BMI,	
30	(b) IL-6 and FPG, (c) IL-6 and HbA _{1C} %,	
	(d) IL-6 and HOMA-IR, (e) IL-6 and TG	91
	The correlation between (a) Vaspin and BMI,	71
	(b) Vaspin and FPG, (c) Vaspin and HbA _{1C}	
31		
	%, (d) Vaspin and HOMA-IR, (e) Vaspin and	02
_	TG, (f) Vaspin and TC	93
	The correlation between (a) Visfatin and	
32	BMI, (b) Visfatin and FPG, (c) Visfatin and	
	HOMA-IR, (d) Visfatin and TG, (e) Visfatin	95
	and TC The correlation between (a) IL-6 and vaspin,	75
22	(b) II. 6 and via fatin (c) Vasnin and	
33	(b) IL-6 and visfatin, (c) Vaspin and visfatin	96
	VISTAUII	70

LIST OF TABLES

Table No.	Table Title	Page
1	The general characteristics of the studied	
1	groups	77
2	Some routine parameters to assess liver and	
2	kidney functions	78
3	Fasting plasma glucose levels of the studied	
	groups	79
4	groups	
	groups	80
5	Serum insulin levels and HOMA-IR values of	
<u> </u>	the studied groups	81
6	The lipids profile of the studied groups	84
7	Serum IL-6 levels of the studied groups	85
8	Serum vaspin levels in the studied groups	86
9	Plasma visfatin levels of the studied groups	87
	The correlation coefficients between HOMA-	
10	IR and various routine parameters investigated	
	in the studied groups	88
	The correlation coefficients between IL-6 and	
11	various parameters investigated in the studied	
	groups	90
	The correlation coefficients between vaspin and	
12	various parameters investigated in the studied	
	groups	92
13	The correlation coefficient of visfatin with	
	various parameters investigated in the studied	
	groups	94
14	Summary for the correlation among various	
	adipokines; IL-6, vaspin and visfatin in the	
	studied groups	96

1 =	Simple and multiple linear stepwise	
15	regression analysis using IL-6 as dependent variable	97
	Simple and multiple linear stepwise	
16	regression analysis using vaspin as dependent	r
	variable	98
	Simple and multiple linear stepwise	
17	regression analysis using visfatin as	ı
	dependent variable	99
18	Individual data of control group	153
19	Individual data of non-obese T2DM group	154
20	Individual data of obese T2DM group	156

PUBLICATION RELATED TO THE THESIS

Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism, In Press, Corrected Proof.

1. Introduction and aim of the work

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder that affects more than 150 million people worldwide. Its prevalence is expected to increase exponentially around the world particularly in developing countries (*Stumvoll et al.*, 2005; *IDF*, 2009). Insulin resistance and inflammation play a major role in the development of T2DM (*Mlinar et al.*, 2007). In addition, increased abdominal/visceral fat is associated with insulin resistance and T2DM (*Antuna-Puente et al.*, 2008). Vigorous efforts have been made to delineate the relationship between increased adiposity and insulin resistance. However, the molecular mechanisms that lead to the development of insulin resistance and T2DM are far from complete elucidation.

The realization that adipose tissue acts as an endocrine gland affecting whole-body energy homeostasis was a major breakthrough towards a better molecular understanding of T2DM (Kershaw and Flier, 2004; Trujillo and Scherer, 2006), and growing evidence implicates adipocyte-derived factors (adipokines) as major regulators of insulin resistance (Fasshauer and Paschke, 2003). Among these adipokines, the inflammatory regulator interleukin-6 (IL-6) has emerged as one of the potential mediators that link obesity-derived chronic inflammation with insulin resistance (Kim et al., 2009). A growing body of evidence has established IL-6 as an important player in metabolic disease states, such as diabetes (Pradhan et al., 2001; Hu et al., 2004; Kim et al., 2009).

Interestingly, *Hida and co-workers* (2005) isolated a unique insulin-sensitizing adipokine termed visceral adipose tissue-derived serine protease inhibitor (vaspin) from the visceral adipose tissue of an animal model of visceral obesity