دراسة التوزيع الموسمي للفطريات في البيئة و تأثيرها على صحة الإنسان والحيوان وحساسيتها تجاه مضادات الفطريات.

رسالة مقدمة من هبه برعي بشير أحمد بكالوريوس علوم، جامعة القاهرة 2004

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

قسم العلوم الأساسية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

Study on the Seasonal Distribution of Fungi in the Environment, Their Effect on Human and Animal Health and Sensitivity to Antifungal Agent.

BY

HEBA BORAI BASHEER AHMED

B.Sc. Sciences . Cairo University, 2004

A Thesis Submitted in Partial Fulfillment of
The Requirements for the Master Degree in
Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

دراسة التوزيع الموسمي للفطريات في البيئة و تأثيرها على صحة الإنسان والحيوان وحساسيتها تجاه مضادات الفطريات.

رسالة مقدمة من هبه برعي بشير أحمد بكالوريوس علوم، جامعة القاهرة 2004

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الأساسية البيئية

تحت إشراف/

اد/. مهرشان طه المقدم.

أستاذ الميكروبيولوجي - كلية البنات جامعة عين شمس.

ا.د/ مجمد طه محمود السيد.

أستاذ الميكروبيولوجي، كلية الطب البيطري، جامعة الزقازيق.

د/ أمل أحمد إبراهيم مكاوي.

أستاذ مساعد ، مركز الفطريات والتكنولوجيا الحيوية، جامعة الأزهر.

ختم الأجازة

أجيزت الرسالة بتاريخ / 2015 موافقة مجلس المعهد / /2015

موافقة مجلس الجامعة / /2015

Study on the Seasonal Distribution of Fungi in the Environment, Their Effect on Human and Animal Health and Sensitivity to Antifungal Agent.

BY

HEBA BORAI BASHEER AHMED

B.Sc. Sciences . Cairo University, 2004

A Thesis Submitted in Partial Fulfillment
of
The Requirements for the Master Degree
in
Environmental Sciences
Department of Environmental Basic Sciences

Under the supervision of:

1- Prof. Dr. Mehreshan Taha EL Mokadem.

Professor of Microbiology, Girl Collage, Ain Shams University.

2- Prof.Dr. Mohamed Taha Mahmoud El Sayed.

Professor of, Microbiology ,Faculty of Veterinary Medicine, Zagazig University.

3- Dr. Amal Ahmed Ibrahim Mekawey.

Assistant Professor ,Mycology and Biotechnology Center, Al-Azhar University.

ACKNOWLEDGMENTS

First and foremost, I always feel indebted to god, the kindest, beneficent and the most merciful. My deep gratitude, great indebtedness and utmost respect to my parents for their advice, support and encouragement.

My great appreciation, very thankful and grateful to Prof. Dr. Mohamed Taha Mahmoud for suggesting the topic of this study, supervising the work, and for his constructive criticism, continuous encouragement, patience, helpful advice throughout all stages to make sure everything ran smoothly

This work would have never been completed without the great help of Prof. Dr. Mehreshan T. El-Mokadem, Professor of Microbiology, Botany Department, Girls College for Arts, Science & Education, Ain Shams University for his sincere cooperation, kind supervision, guidance, planning the experiments.

I would like to extend my thanks to Dr. Amal Mekawey Professor of Microbiology, Botany Department, Girls College for Arts, Science & Education, Aim Shams University, for help, support, continuous encouragement, faithful guidance and close supervision which made it possible to overcome all difficulties.

I am also very thankful to Professor of Organic Chemistry, Cairo University for helping and commenting on the chemical analysis and Professor for helping and commenting on identification of Egyptian Flora used in this study.

I am highly indebted to Mr.Khaled El Tokhy, chairman of the Board of Trustees of Misr University for Science and Technology for his support and encouragement the researchers and University staff.

I would like to pay special gratitude and appreciation to Mycology Unit and Dermatology Department members in Misr University for Science and Technology. I cannot forget also The Regional Center for Mycology and Biotechnology.

No thesis ever reaches the shelves without a lot of work by a lot of people, all pooling their unique talents and perspectives over a long period of time. Space does not permit me to list everyone who helped make this thesis a reality. I thank all.

I would like to pay special gratitude and appreciation to my brothers and all my family for their care and effort, which was always pushing me forward.

Finally, my greatest thanks and best. Regards to my friends, who helped me sincerely. Also, my thanks and appreciation to everyone who offered me an unfailing support and assistance.

ABSTRACT

Fungi are among the most important aeroallergens. The major allergic diseases induced by fungi are asthema, rhinitis, and hypersensitivity pneumonia. The concentration of airborne fungal spores has been linked to wind, humidity, temperature, rainfall, altitude, vegetation and various specific reservoirs of contamination (TOPBAS et al., 2005). The aim of this study was to provide aeromycological baseline information for the first time about some areas in 6th October governorate (previously), Egypt (Monshat El Kanater, Embaba, El Ayat, Oceem Abo rawash, 6 th October city and El wahat), 104 air samples were collected from the aforementioned locations (56 outdoor and 48 indoor) during four year seasons from December 2009 to December 2010 and subjected for mycological study. The investigated areas are characterized by high populations, human activities including agriculture, trades, industry and animals grazing. Mycoaerospora samples were cultivated by gravitational method. Outdoor air samples revealed the isolation of 14 genera of fungi belonged to 19 species. The predominant fungi were Asperigillus niger (4.41%) Asperigillus flavus (3.68%) and Cladosporium cladosporiodes (3.68%) in falls season, Asperigillus niger (2.94%) in winter, Rhodotorula mucilaginosa (2.94%) in spring and Asperigillus flavus (3.68 %) in summer. Indoor air samples revealed the isolation of 19 genera of fungi included 20 species. The predominant fungi were Asperigillus niger (6.02%) in fall and spring, Asperigillus niger, C. cladosporiodes and Mucor recemosis (3.61%) in winter, Asperigillus niger and C. cladosporiodes (3.61%) in summer.

Soil from the same sites samples revealed the isolation of 19 genera which identified into 25 species. The predominant fungi in fall, winter and spring were *A.niger* which isolated in 5.18%, 5.93% and 5.93% respectively. *A.flavus* was the predominant fungi isolated in summer (2.96%). On the other hand in

soil contained with pigeon droppings; the pathogenic fungus (*Cryptococcus neoformance*) was isolated in 0.74%.

Keratinophilic fungi have been receiving considerable attention in recent days as these include dermatophytes and are able to degrade various types of keratinous substrates. Several opportunistic keratinophilic fungi with pathogenic potential are emerging rapidly. Keratinophilic fungi namely *M. gypseum* and *Chrysosporium tropicum* were isolated from soil collected from stock yards in 2.22% for each of them.

The antifungal effect of some traditional plant extracts (garlic-onion-black pepper) were tested on some isolated fungi, the susceptibility of fungi was different towards the different plant extracts. Garlic showed great antifungal effect against *Asperigillus niger, Asperigillus flavus, Fusarium oxysporum, Pinicillium chrysogynum* and *Candida albicans,* onion showed moderate antifungal effect against *Asperigillus flavus, Asperigillus fumigatus, Fusarium oxysporum, Pinicillium chrysogynum* and *Candida albicans.* While black pepper showed antifungal effect only against *Asperigillus niger* and *Pinicillium chrysogynum*.

Contents

ABSTRACT	1
INTRODUCTION	ç
Aim of the work	
REVIEW OF LITERETURE	. 12
Air fungi:	. 12
soil fungi	15
The pathogenicity of fungi	. 18
II-Infection:	. 18
A-superficial Mycosis:	. 19
1-Dermatophytosis:	. 19
2-Onychomycosis	. 20
3-Tinea versicolor	. 20
4-Candidiasis	. 21
5-Tinea nigra	. 21
6-White piedra Black piedra	. 2 1
B- Subcutaneous:	
1-phycomycosis	
2-Chromoblastomycosis	
3-Mycetoma	
C- Invasive mycoses:	
1-Aspergillosis	22
2-Fusariosis	
3-Zygomycosis	. 23
4-Cryptococcosis	
D- Dimorphic Systemic Mycoses:	. 24
1-Histoplasmosis	
2-Penicilliosis	
3-Sporotrichosis	. 25
4-Coccidioidomycosis	. 25
5-Blastomycosis	. 26
6-Paracoccidioidomycosis	. 26
III-Mycotoxicoses	. 26
IV. Mycetismus	. 26
Antifungal activity of some medicinal plants:	. 27
I-Allium sativum (garlic)	
II-Allium cepa (onion)	. 29
III-Piper nigrum (black pepper)	
MATERIALS AND METHODS	. 32
I- Study site:	. 32
II-Air and soil samples	
A- Collection of air samples:	
B- Collection of soil sample	
Soil analysis:	
III-Media	
IV-Cultivation of samples	
a - Isolation of air fungi	. 35

b- Isolation of soil fungi by two methods	35
1-Soil dilution method:	
2-Hair bait technique:(isolation of keratinophilic fungi):	36
3-Isolation of Cryptococcus spp	36
V-Characterization of fungal isolates	37
VI-Stains	
VII-Medicinal plants	
1-Allium sativum (garlic)	
2-Allium cepa (onion)	
3- <i>Piper nigrum</i> (black pepper)	
VIII-Effect of some medicinal plants extracts on the fungal isolates	
Results	
1- Isolation of fungi from air during the year seasons from December 2009	
2010	
A-Outdoors	
2- Fungi isolated from soils in different sites during year seasons from Dece	
December 2010	
3-identiffication of fungal isolates in the present study	
1-hyaline moulds	
A-Mucorales:	
Mucor recemosis	
Rhizopus oryza	
Synecphalestrum racemosum	
B-Aspergillus	
Penicillium spp	
Fusarium spp	
muiropsosyrh&iceps	
Scedosporium apiospermum	
Scopulariopsis brevicaulis	
Sepedonium spp	
2-Dematiaceous moulds:	73
2 V	76
3-Yeasts:	
R.mucilaginosa	
C.albicans	
T.cutaneum	
4- Antifungal effect of some plant extracts	
NOISUCSSID	
CONCLUSION	
DNEMMOCERNOITA	
SUMMURY	
RRFFERENCE	
YRAMMUS CIBARA	

AT FO TSILSELB	22
Table 1: show temperatures in target study places	33
Table 2: Total percentage dna ecnerucco of roodtuo airborne fungi recovered from emosaccording some 6th October governorate areas, Egyp	
Table 3: Total percentage of airborne fungi recovered from tuodoor air according to seasons	
Table 4: Total percentage dna ecnerrucco of airborne fungi recovered from eht rood setis	
Table 5: Total percentage of airborne fungi recovered from indoor air according to y seasons	
Table 6: Total count and occurrence of different fungi recovered from the soil of sor October governorate areas, Egypt	
Table 7: Total percentage of soil borne fungi recovered from soil of 6th October governorates according to year seasons	55
Tables 8: Characters for tested soil specimens	58
Table 9: Different isolated Mucorales species	59
Table 10: Different isolated Aspergillus spp. characters	62
Table 11. Different isolated <i>Penicillium spp.</i> Characters	65
Table 12. Different isolated Fusarium species	67
Table 13. Chrysosporium tropicum macro and micromorphological characters	69
Table 14. Scedosporium apiospermum macro and micromorphological characters	70
Table 15. Scopulariopsis brevicaulis macro and micromorphological characters	71
Table16. Sepedonium spp. macro and micromorphological characters	72
Table .17. Different isolated dematiaceous fungi	73
Table 18. <i>C. neoformans</i> macromorphological and micromorphological characters	76
Table 19. R. muciloginosa, C.albicans & T.cutaneum macromorphological and	
micromorphological characters	77
Table 20. Effect of plant extracts from <i>Allium sativum, Allium cepa</i>	02
and Pepper nigrum	8Z

LIST OF FIGURES

Figure 1: Hair bait technique that show the growth of keratinophilic fungi on the hair36
Figure 2: Total percentage and occurrence of outdoor airborne fungi recovered from the air of some Giza areas, Egypt44
Figure 3: outdoor airborne fungi in different sites dendrogram (cluster analysis)46
Figure 4:Total percentage of airborne fungi recovered from outdoor air according to year seasons46
Figure 5:Total percentage and occurrence of airborne fungi recovered from the
indoor air sites
Figure 6.Total percentage of airborne fungi recovered from indoor air according to year seasons
Figure 7.dendogram of indoor air fungi in different year seasons (Cluster analysis)51
Figure 8. Occurrence of soil borne fungi in different collection sites
Figure 9. Seasonal Distribution and occurrence of soil borne fungi
Figure 10. dendogram of soil borne fungi in different year seasons (Cluster analysis)
Figure.11.a <i>Mucor recemosis</i> Sporangia are hyaline turned to brown60
Figure.11.b <i>Mucor recemosis</i> Sporangiophore with subspherical columellae60
Figure.12.a <i>Rhizopus oryza:</i> Blackish grey mycelium in 2 days fills a Petri dish
Figure.12.b <i>Rhizopus oryza</i> :Non septated hyphae , sporangiophore with rhizoid and columella
Figure.13.a. <i>Synecphalestrum racemosum</i> Fluffy,dark grey colony on SDA61
Figure 13.b Synecphalestrum racemosum Sporangiophore
Figure.14.a. <i>A.fumigatus</i> : dark green with white border colonies
Figure.14.c. <i>A.flavus</i> : floccose yellowish green colonies
Figure.14.d. <i>A.flavus</i> : rough conidiophores, vesicle is globosa and radiated head63
Figure. 14 .e. <i>A.niger</i> : granular black colonies with pale yellow or colorless reverse on SDA
Figure. 14.f. <i>A.niger</i> : Spherical dark brown conidia64

Figure. 14. g. A. terrus brownish yellow colonies on SDA64
Figure.14. h. <i>A. terrus</i> pyriform vesicles,conidia are globose and hyaline64
Figure. 15.1 <i>Penicillium chrysogynum</i> : Velvety dark green and folded colonies with broad white margin on SDA66
Figure. 15.2 Penicillium chrysogynum: reverse colorless on SDA66
Figure.15.3 <i>Penicillium citrinum :</i> Biverticillat branching conidiophores phialides flask shape. subglobose conidia
Figure. 15.4 <i>Penicillium chrysogynum</i> : branching conidiophores& conidia66
Figure .16.1 Three species of Fusarium: Fusarium oxysporum, Fusarium solani and Fusarium verticilloides on SDA67
Figure .16.2 Fusarium oxysporum Chlamydoconidia present singly or pairs terminal or intercalary68
Figure .16.3 Fusarium verticilloides microconidia arranged in sticky head68
Figure .16.4 Fusarium solani multibranched conidiophorese68
Figure .17.1 <i>Chrysosporium tropicum</i> white powdery culture on SDA68
Figure .17.2 Chrysosporium tropicum: short conidiophores , Smooth obvoid to clavate69
Figure . 18.1 Scedosporium apiospermum :Brownish Suede like to floccose colony on SDA70
Figure .18.2 Scedosporium apiospermum : unicellular conidia70
Figure.19.1 Scopulariopsis brevicaulis:powdery sandy tan surface color on SDA71
Figure. 19.2 Scopulariopsis brevicaulis:lemon shaped conidia, rough with truncate base71
Figure. 20.1 Sepedonium spp: bluish white powdery to fluffy colonies on SDA
Figure.20.2 Sepedonium spp :spherical conidia have projections give its character of a rough wall
Figure.21.1 Stemiphillium solani: velvety to cottony brownish black
Figure. 21.2 Stemiphillium solani: branched conidiophore
Figure. 22.2 Alternaria alternate: conidiophores were arise single or in groups unbranched pyriform found solitary or in chains
Figure.23.2 <i>Curvularia lunata</i> :brown Conidiophores macroconidia
Figure.24. 1. Bipolaris spicifera: Floccose Grey black on SDA

Figure. 24. 2. Bipolaris spicifera: Conidiophores, Macroconidia	73
Figure .25.1 <i>C. neoformans</i> : on caffeic acid medium	
Figure.26.1 R.mucilaginosa on Sabouraud's dextrose agar	78 .
Figure.26.2 <i>R.mucilaginosa</i> on corn meal agar	78
Figure 27.1 The colonies of <i>Candida albicans</i> on SDA	79
Figure. 27.2 on chromogenic candida agar	79
Figure. 27.3 Candida albicans show brown color in Candida agar	79
Figure. 27.4 Candida albicans on corn meal or rice agar	79
Figure 28.1 <i>T. cutaneum</i> : on SDA	80
Figure 28.2 <i>T.cutaneum</i> (Gram stain)	80
Figure.29 effect of plant extracts on fungal growth	82 82 82
Figure. 34.1 effect of crude extract garlic, onion and black pepper	
on <i>P.chrysogynum</i>	83
Figure. 34.2 effect of garlic, onion and black pepper extracts	
on P chrysogynum	83
Figure. 35 effect of crude extract garlic, onion and black pepper	
on <i>C.albicans</i>	83

INTRODUCTION

Many microorganisms present in the air, including viruses, bacteria, and fungi are associated with diseases occurring in humans, plants and animals. Fungi were found everywhere in the water, air and soil. The problem start when their concentration is high and they find proper conditions for growth, such as high humidity and suitable temperature (*Bugajny.*, 2004). Fungi are widespread all over the world, and high environmental burdens have been shown to be affected by various factors such as wind, moisture, and temperature and air pollution leading to variations with respect to species and quantities from one season to another. Fungal spores and hyphal fragments are commonly observed in aerosol samples collected from outdoor and/ or indoor environments. Exposure to bioaerosol particles associated with common fungi (mould) in the indoor environments of residences, offices and schools has increasingly become a public health concern. (*Godish et al. 2007*)

There are many studies from different geographic areas which indicate that bronchial asthma and allergic rhinitis reacted positively to fungal extracts and that higher symptom scores in asthmatic children correlate well with higher fungal exposures in indoor dwellings. Moreover, with radiotherapy, corticosteroid and immunosuppressive treatments, there is a tendency towards opportunistic systematic fungus infections such as Aspergillosis, Mucormycosis, Penicillosis, brain abscess, pneumonitis and Endocarditic especially in diabetes mellitus, bronchiectasia, and emphysema (TOPBAS et al., 2005).

Candida spp. constitutes the third to fourth most common causes of nosocomial blood stream infection. Aspergillus spp. is the most common cause of infectious pneumonic mortality in haematopoietic transplant recipients.

Cryptococcus neoformans is the most common cause of fungal-related mortality in human immunodeficiency virus (HIV)-infected patients. Although these organisms are important pathogens, less common but emerging fungal pathogens also cause morbidity and mortality in an increasingly expanding immunocompromised patient population (Walsh et al. 2004).

The soils represent the main reservoir of fungi. Some soil fungi are potential pathogen to both human and animals. Soils that are rich in keratinous materials are the most conductive for the growth and occurrence of keratinophilic fungi. The potentially pathogenic keratinophilic fungi and allied geophilic-dermatophytic species are widespread worldwide (*Shadzi et al.*, 2001).

The soil in farmyard, park, street and desert contained organic material are the best candidate for growth of keratinolytic and saprophytic fungi. Most dematiaceous fungi are ubiquitous, are cosmopolitan saprobes of soil and decaying matter, and are pathogens of plants. As a result, dematiaceous fungal infections occur worldwide. (*Shtayeh et al.*, 2000).