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Summary:

The Apriori algorithm is one of the most basic techniques that are used to discover frequent
patterns in dataset. Apriori is iterative and works sequentially. It generates candidate sets having all
possible combinations for frequent itemsets that are generated from the previous iteration and
comparing each combination of items with every transaction record in every iteration. Thus,
Apriori algorithm is not efficient and gets computationally more expensive as the data size is
increased. The rapid growth of data necessitates running the data intensive algorithms in parallel
distributed environment to achieve convenient performance. Many approaches have been proposed
to solve the Apriori major drawbacks that severely degrade the performance as the datasets get
larger which is a common feature in Today’s data. In this thesis, Apriori Algorithm on Spark based
on Cuckoo Filter structure (ASCF) is introduced. ASCF succeeds in removing the candidate
generation step from Apriori algorithm to reduce computational complexity and avoid costly
comparisons. The proposed algorithm is implemented on spark in-memory processing distributed
environment to reduce processing time. The ASCF offers great improvement in performance over
other implementation approaches of Apriori algorithm based on spark.
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Abstract

Data mining is the process that is used for extracting interesting patterns from large amount
of data using a variety of techniques. One of the techniques that help to discover important
relations between variables in large dataset is Association rule mining (ARM). It is used to
identify strong rules discovered in databases. To build the association rules for all itemsets
this requires large memory and processing resources. So, only frequent itemsets are
considered to reduce the number of itemsets. There are many frequent itemset mining
algorithms; the most popular algorithm is the Apriori algorithm. The Apriori algorithm is
iterative and works sequentially, its normal execution is on a single machine. Nowadays,
there is a great explosion of data; the rapid growth of data necessitates running the data
intensive algorithms in parallel distributed environment to achieve convenient
performance. The major drawbacks of the Apriori algorithm concerning its computational
complexity make the algorithm inefficient to use when the data size is getting larger. In
this thesis, Apriori Algorithm on Spark based on Cuckoo Filter structure (ASCF) is
introduced. The ASCF algorithm solves the inherent drawbacks in the original Apriori
algorithm. It succeeds in removing the candidate generation step from Apriori algorithm to
reduce computational complexity and avoid costly comparisons, and uses cuckoo filter to
further enhance the performance. The proposed algorithm is implemented on spark in-
memory processing distributed environment to reduce processing time. It offers great
improvement in performance over other previous approaches of Apriori algorithm
implementation based on spark. The ASCF on a cluster of 4 nodes achieves a time of only
5.8% of the competing approach on the Retail dataset with minimum support of 0.75% ,
25.6% on Chess dataset with minimum support of 85% and 37.3% on T1014D100K with
minimum support of 0.25%.



Chapter 1 : Introduction

We live in the data age, this data is being generated by everything around us at all times:
from social sites, sensors, search engine, medical reports, etc. This huge amount of data is
known as ‘Big Data’. It is as a collection of large, diverse, complex dataset that comes at
high speed. There is an urgent need to assist humans in extracting useful information
(knowledge) from this data. It requires new architecture, techniques, algorithms, and
analytic methods to manage it and extract value and hidden knowledge from it. Big Data
mining is the process of discovering patterns from large datasets that have those mentioned
properties.

1.1. Problem Statement

The problem can be formally stated as:
Let D be a set of transactions in large transactional data where each transaction T is a set of

items such that T & |, where | = {il, i2,---,im}is a set of items. Each transaction has a
unique identifier TID. Let X and Y be two different sets of items, where X & I, Y & |
are subset of I and XY = . IF X & T then the transaction T is said to contain X.

Each itemset appears a number of times in D so there are a percentage of transactions
that contain all items in X, which is called support(X). The itemsets X and Y appear

together in D if there are S percentage transactions that contain X UY, where S is the
support(X UY), we say there is association between itemsets X and Y.

The problem is discovering important association rules between variables (items) in
large transactional dataset. These rules are called strong rules if they have support and
confidence greater than or equal predefined minimum support and confidence thresholds.



Mining association rule task consist of two steps:

e Finding all frequent itemsets which have support greater than or equal a predefined
minimum support
e Generating confident rules from the frequent itemsets discovered.

The performance of an algorithm for mining association rules is determined by the first
step, while the second step is straightforward. Most of the algorithms are inefficient and
take a lot of time when working with large datasets because they are designed to work with
a single machine in an iterative manner with no natural way for distribution. So, new
technologies are required to store and process large data sets in a distributed computing
environment like Hadoop Mapreduce and Spark.

1.2. Motivation

The Apriori algorithm is iterative and works sequentially. Its normal execution is on a
single machine whose speed leads to severe performance degradation when working with
big data so multiple machines and a parallel algorithm are needed where issues like data
replication and synchronization must be addressed. The major drawbacks of the Apriori
algorithm concerning its computational complexity make the algorithm inefficient to use
when the data size get larger. It generates candidate sets having all possible pairs from
frequent itemsets that are generated from previous iteration and compares each pair with
every transaction record in every iteration.

In this thesis, we apply Apriori Algorithm on Spark based on Cuckoo Filter structure
(ASCF) to solve these problems. We propose a parallel Apriori implementation on Spark
distributed environment to reduce processing time, and use cuckoo filter structure to
further enhance the performance. We focus on the step that is the most time consuming in
the whole algorithm, which is generating candidate sets in the second phase and solve this
problem by eliminating it to reduce computational complexity and avoid costly
comparisons.



