

"GEOPHYSICAL EXPLORATION FOR MINERAL ORE DEPOSITS AT KORABKANSI, SOUTH EASTERN DESERT AND ABU ZENEIMA, SOUTH SINAI, EGYPT"

A Thesis

Submitted for the of Ph.D. Degree of Science in Geophysics (applied Geophysics)

By

MOHAMED ABD ELSABOUR IBRAHIM AL DEEP

(B.Sc. in geology)

(M.Sc. in Geophysics)

To Geophysics department, faculty of science, Ain Shams University

Supervised By

Prof. Dr. Salah El-Deen A. Mousa P

Vice Dean of Faculty of Science, Ain Shams
University, Cairo

Prof. Dr. Sultan Awad Sultan Arafa

Prof. of geophysics, National Research Institute of Astronomy and Geophysics, Helwan, Cairo.

Prof. Dr. Sami Hamed Abdel Nabi

Prof. of geophysics, geophysics department, Faculty of Science, Ain Shams University, Cairo

Prof. Dr. Taha Tawfik Taha Rabeh

Prof. of geophysics, National Research Institute of Astronomy and Geophysics, Helwan, Cairo.

Dr. Salah Ahmed Mansour

General manager of Geophysics, EMRA of Egypt, Abaasia, Cairo.

NOTES

Some results of this Thesis have been presented in **The Fifth Arab conference on Astronomy and Geophysics** which held in Cairo, Egypt from 17 to 20 October 2016

Under the title:

"ORE MINERAL INVESTIGATION BY USING MAGNETIC AND GEOELECTRIC DATA: CASE STUDY, MANGANESE-IRON ORE IN WADI AL SAHU, EAST SINAI, EGYPT"

This paper presents the most important results of the interpretation of the magnetic data on the area of Wadi Al Sahu, East Sinai, Egypt, which discussed in details in the present thesis.

ACKNOWLEDGMENTS

All gratefulness is due to Almighty **ALLAH**, who guided and aided me to bring force to make this work. I bow to him thanking his magnificence, and to the light of human beings, our prophet Mohammed prayer; peace is upon him, who urged to exert efforts for seeking knowledge.

The present work is dedicated to **my parents, brothers, and sisters** who have given me so very much I could't even begin to list it all.

Great thanks to Ain Shams University, Faculty of Science, and Geophysics

Department for scientific and administrative facilities provided during the preparation of this study

I wish to articulate my truthful acknowledge to **Prof. Dr. Salah El-Deen A. Mohamed Mousa** the head of Geophysics department, Faculty of Science, Ain Shams University and also one of my supervisor and mentor

I would like to express my great indebtedness and my deepest thanks to **Prof. Dr. Sami Hamed Abdel Nabi** Professor of Geophysics – Geophysics Department - Faculty of Science,

Ain Shams University

Special thanks and gratitude to **Prof. Dr. Sultan Awad Sultan** Arafa, Prof. of geophysics, National Research Institute of Astronomy and Geophysics, who has been my true support without his expert guidance this work would not have been completed. He always spent his valuable time to motivate me and clear our doubts whenever I needed it at any hour of the day.

I would like to thank **Prof. Dr. Taha Tawfik Taha Rabeh** Prof. of geophysics, National Research Institute of Astronomy and Geophysics, Helwan, and many thanks to **Dr. Salah Ahmed Mansour,** General manager of Geophysics, EMRA of Egypt, Abaasia, Cairo.Finally; many thanks are due to the staff members of Geophysics Department, Faculty of science, Ain shams University.

MOHAMED ABD ELSABOUR IBRAHEIM

CONTENTS

AC	KNOLEI	DGMENT	
CO	NTENTS	S	I
LIS	T OF FIG	GURES	\mathbf{V}
LIS	T OF TA	ABLES	X
ABS	STRACT	·	XI
		CHAPTER ONE	
		INTRODUCTION	
1.1	GENER	AL STATEMENT	1
1.2	KORAB	KANSI AREA	1
	1.2.1	LOCATION	1
	1.2.2	TOPOGRAPHY AND GEOMORPHOLOGY	2
	1.2.3	PREVIOUS STUDY	2
1.3	ABU ZE	ENEMA (WADI AL SAHU AREA)	5
	1.3.1	LOCATION	5
	1.3.2	TOPOGRAPHY AND GEOMORPHOLOGY	6
	1.3.3	PREVIOUS STUDY	7
		CHAPTER TWO	
		GEOLOGIC SETTING	
2.1	GEOLO	GICAL AND MINERALOGICAL STUDIES OF TITANOMAGNETITE IN	9
	KORAB	KANSI AREA	
	2.1.1	INTRODUCTION	9
	2.1.2	THE STRUCTURAL ANALYSIS	10
	2.1.3	PETRO PHYSICAL PROPERTIES OF THE ORES	13
	2.1.4	PETROGRAPHIC STUDY	13
	2.1.5	GEOCHEMISTRY OF THE TITANOMAGNETITE ORE	15
	2.1.6	MINERALOGY	16
2.2	GEOLO	GICAL AND GEOCHEMICAL STUDY OF THE MANGANESE-IRON ORE	
	IN WAD	OI AL SAHU	17
	221	INTRODUCTION	17

	2.2.2	UM BOGMA FORMATION	17
	2.2.3	MINERALOGY OF THE MANGANESE-IRON ORE DEPOSITS	18
	2.2.4	SURFACE GEOLOGY OF STUDIED AREA	19
	2.2.5	ORIGIN OF THE MANGANESE-IRON ORE DEPOSITS	19
	2.2.6	GEOCHEMISTRY OF MANGANESE IRON ORE	23
		CHAPTER THREE	
		DATA ACQISITION ANDMETHODOLOGY	
3.1	GEO	PHYSICAL SURVEY OF KORABKANSI AREA	25
	3.1.1	GEOPHYSICAL DATA ACQUISITION	25
	3.1.2	MAGNETIC MEASUREMENTS	25
	3.1.3	MAGNETIC INSTRUMENTS	25
	3.1.4	MAGNETIC DATA CORRECTION AND PRESENTATION	26
	3.1.5	RESISTIVITY AND INDUCED POLARIZATION INSTRUMENTS	27
	3.1.6	RESISTIVITY AND INDUCED POLARIZATION MEASUREMENTS	27
	3.1.7	DIPOLE-DIPOLE ARRAY	28
3.2	GEOP	HYSICAL SURVEYS OF WADI AL SAHU AREA	29
	3.2.1	MAGNETIC INSTRUMENTS	29
	3.2.2	MAGNETIC MEASUREMENTS	31
	3.2.3	MAGNETIC DATA CORRECTION AND PRESENTATION	31
	3.2.4	RESISTIVITY AND INDUCED POLARIZATION INSTRUMENTS	31
	3.2.5	DIPOLE-DIPOLE ARRAY	32
3.3	DATA	PREPARATION AND PROCESSING	32
	3.3.1	GRIDDING	32
	3.3.2	DATA PROCESSING	33
	3.3.3	GRID DISPLAY AND MAPPING	33
	3.3.4	APPLICATION OF GIS SOFTWARE	33
	3.3.5	PROFILING	34
	3.3.6	2-D MODELING.	34
3.4	THEO	RITICAL ASPECTS OF MAGNETIC METHOD	34
	3.4.1	FOUREIR ANALYSIS AND SYNTHESIS	35

	3.4.2	THE APPARENT MAGNETIC SUSCEPTIBILITY	36
	3.4.3	ELECTRICAL RESISTIVITY TOMOGRAPHY	37
	3.4.4	TIME DOMAIN INDUCED POLARIZATION	39
	3.4.5	RESISTIVITY AND IP DATA INVERSION	39
		CHAPTER FOUR	
		INTERPRETATION OF KORABKANSI GEOPHYSICAL DATA	
4.1	GROUN	ND MAGNETIC DATA	41
	4.1.1	QUALITATIVE INTERPRETATION	41
	4.1.1.1	THE TOTAL MAGNETIC FIELD MAP	42
	4.1.1.2	THE REDUCED TO THE POLE MAP	4 4
	4.1.1.3	THE FIRST VERTICAL DERIVATIVE MAP	46
	4.1.1.4	THE APPARENT MAGNETIC SUSCEPTIBILITY MAP	46
	4.1.1.5	DOWNWARD CONTINUATION MAGNETIC MAPS	49
	4.1.1.6	SOURCE EDGE DETECTION (SED) MAPS	53
	4.1.2	QUANTITATIVE MAGNETIC INTERPRETATION	56
	4.1.2.1	TWO DIMENSIONAL RADIAL AVERAGED POWER SPECTRUM	56
	4.1.2.2	MAGNETIC PROFILE INVERSION	57
	4.1.2.3	EXTENDED EULER DEPTH CALCULATION	67
	4.1.2.4	2-D DEPTH MAGNETIC CALCULATION USING 2-D ANALYTICAL	
		SIGNAL	70
	4.1.2.5	3-D EULER DECONVOLUTION FOR THE MAGNETIC DATA.	71
	4.1.2.6	SOURCE PARAMETER IMAGING (SPI)	76
	4.1.2.7	MULTI-SCALE EDGE DETECTION	77
4.2	INTERF	PRETATION OF GEO-ELECTRIC DATA	82
	4.2.1	VERTICAL ELECTRIC SOUNDING (VES)	82
	4.2.2	INTERPRETATION OF DIPOLE-DIPOLE CROSS-SECTIONS	84
	4.2.3	GEO-ELECTRIC 2-D INVERSION OF (VES) DATA	89
4.3	GENER	AL DISCUSSION	95
		CHAPTER FIVE	

INTERPRETATION OF ABU ZENEIMA (WADI AL SAHU AREA) GEOPHYSICAL DATA

5.1	INTERP	RETATION OF MAGNETIC DATA	97
	5.1.1	QUALITATIVE INTERPRETATION OF MAGNETIC DATA	97
	5.1.1.1	THE TOTAL MAGNETIC FIELD AND RTP MAPS	97
	5.1.1.2	THE TOTAL VERTICAL GRADIENT AND THE HORIZONTAL	
		GRADIENT	99
	5.1.1.3	SOURCE EDGE DETECTION TECHNIQUES	100
	5.1.1.4	THE ANALYTICAL SIGNAL MAP	101
	5.1.2	QUANTITATIVE INTERPRETATION OF MAGNETIC DATA	103
	5.1.2.1	2-D DEPTH MAGNETIC CALCULATION USING 2-D ANALYTICAL SIGNAL	10
	5.1.2.2	3-D EULER DECONVOLUTION FOR THE MAGNETIC DATA	10
	5.1.2.3	SOURCE PARAMETER IMAGING	10
	5.1.2.4	3-D ANALYTICAL SIGNAL	11
5.2	INTERPR	ETATION OF DIPOLE-DIPOLE GEO-ELECTRICAL SECTIONS IN WADI	
	ELSAHU	AREA	11
	5.2.1	DIPOLE-DIPOLE CROSS-SECTION NO.1	11
	5.2.2	DIPOLE-DIPOLE CROSS-SECTION NO.2	11
	5.2.3	DIPOLE-DIPOLE CROSS-SECTION NO.3	11
5.3	INTEGRA	TED INTERPRETATION BETWEEN MAGNETIC AND GEO-ELECTRIC	
	DATA		11
	5.3.1	MODEL NO.1	11
	5.3.2	MODEL NO.2	11
	5.3.3	MODEL NO.3	12
5.5	GENERA	AL DISCUSSION	12
		CHAPTER SIX	
SUI	MMARY	AND CONCLOSION	12
RE	FERENC:	ES	13
٨R	ARIC SIII	MMARV	1

LIST OF FIGURES

Fig. (1.1):	Location map of korabkansi area	3
Fig (1.2):	Topography map showing the rough terrain in the study area which constructed	
	from Landsat DEM	4
Fig. (1.3):	Location map of the Wadi al Sahu area.	5
Fig. (1.4):	Topography map of Wadi al Sahu showing the rough terrain of the studied area,	
	constructed from Landsat DEM.	6
Fig. (2.1):	Geological map of South Korabkansi area constructed from Egypt geological map	
	(EGPC and CONOCO (1987), sheet NF 36 NE)	11
Fig. (2.2):	The Wrench Model of the E-W dextral mega-shears and the associated structures	
	applied for the Eastern Desert of Egypt, EMRA internal report (2004)	12
Fig. (2.3):	Geological map of the studied area showing main lithological units constructed	
	after EGSMA, NARSS, UNDP, UNESCO (2005)	20
Fig (2.4):	Generalized lithostratigraphy of the Paleozoic succession in the um bogma area,	
	western central Sinai (from Kora 1984)	21
Fig. (2.5):	lithological classification of um bogma Formation showing the three members	
	(after E1-Sharkawi et al. (1990)	21
Fig. (3.1):	Location map of the detailed magnetic survey in the study area of Korabkansi	
	area	26
Fig. (3.2):	The geometrical factor and configuration of dipole-dipole array	28
Fig. (3.3):	The arrangement of electrodes for a 2-D electrical measurements used to build up	
	a pseudo section in dipole-dipole array	29
Fig. (3.4):	location map of the total geophysical work magnetic and dipole- dipole profile at	
	Wadi Al Sahu area, Abu Zeneima, Sinai	30
Fig. (3.5):	a. an Illustration of the IP-related decay of potential after interruption of the	
	primary current. b. Effect of the IP decay time on the potential waveform for a	
	square-wave input current	39
Fig. (4.1):	The total magnetic intensity map of the study area	43
Fig. (4.2):	Shaded color relief map of the reduced to pole magnetic intensity, of the study	
	area	42

Fig. (4.3):	Shaded color relief map of the first vertical derivative magnetic field of the	
	studied area.	47
Fig. (4.4):	Shaded color relief map of the apparent magnetic susceptibility of the studied area	48
Fig. (4.5):	The downward continued magnetic field map of the studied area (d=-10 m.), as a	
	color shaded relief map	51
Fig. (4.6):	The downward continued magnetic field map of the studied area (d=-20 m.), as a	
	color shaded relief map	52
Fig.(4.7):	Shaded color relief map of the RTP map with source edge plots	54
Fig.(4.8):	Total horizontal gradient map as a shaded color map with the source edge	
	symbols plots	55
Fig.(4.9):	The 2-d Radially average power spectrum curve of the studied area	57
Fig.(4.10):	Location of the selected anomalies along each measured profile with shaded relief	
	of the total magnetic field as a background	59
Fig.(4.11):	Inverted model of selected anomaly along profile no L11 modeled as a tabular2	
	inverted model of selected anomary along profile no L11 modeled as a tabular2	60
Fig.(4.12):	Inverted model of selected anomaly along profile no L3100 modeled as tabular2	61
Fig.(4.13):	Simple plot of the selected anomalies and a post of thickness detect of each	
	anomaly, the calculated thickness reveal two areas of economic importance	65
Fig.(4.14):	Simple contouring of the depth to the top of magnetic sources calculated by 2-D	
	inversion method and depth posts for each anomaly with RTP as background	66
Fig (4.15):	The extended Euler solution of line L100 with solutions of magnetic contacts and	
	dike sources	68
Fig. (4.16)	The extended Euler solution of line L1000 with solutions of magnetic contacts	
	and dike sources.	68
Fig.(4.17):	a. Depth map to the top of causative body using extended Euler deconvolution	
	for magnetic data, b. The same map with segments of the Titanomagnetite	
	exposures (the location of the segments traced after EMRA internal report	
	2004)	69
Fig.(4.18):	The analytical signal solution of line L0 with dyke, clustered dyke, and contacts	
	symbols plotted versus depth.	70

Fig.(4.19):	The analytical signal solution of line L2 with dyke, clustered dyke, and contacts	
	symbols plotted versus depth.	71
Fig.(4.20):	a. Depth map to the top of causative body using analytical signal analysis for	
	magnetic data, b. The same map with segments of the Titanomagnetite exposures	
	(the location of the segments traced after EMRA internal report 2004).	71
Fig.(4.21):	Classified map of the Euler deconvolution calculated from the RTP magnetic map	
	of the studied area (structural index (SI=zero))	73
Fig.(4.22):	RTP shaded relief map taking as a background to the Euler map (with structural	
	index equal to zero for the study area	74
Fig.(4.23):	Classified map of Euler Deconvolution calculated from the magnetic data of the	
	studied area (structural index (SI= 1))	75
Fig.(4.24):	a. Depth to the top of magnetic sources map estimated by source parameter	
	imaging technique, b. The same depth surface map with ore outcrops plots	77
Fig.(4.25):	Total magnetic field with the plot of multi-scale edge detection connected	
	points	80
Fig.(3.26):	multi-scale edge points as a connected lines (worms) plotted over the RTP	
	map	81
Fig.(3.27):	a. Depth to magnetic sources calculated with 2-D analytical signal, b. Depth to	
	magnetic sources map calculated with extended Euler method, worms calculated	
	by multi scale edge detection plotted over both maps to show to how extent the	
	magnetic sources coincident with downward contact clusters	82
Fig.(4.28):	Location of the VES's, and the Geo-electric cross-section with Topography in the	
	background	88
Fig.(4.29):	a. North South resistivity cross-section with linear depth value, on the top	
	resistivity curves of all soundings along the profile, the contour lines appear in the	
	cross section is logarithmic and delineate zones with resistivity less than 100 Ω .	
	B. Interpreted geological section constructed using the calculated resistivity	
	models constructed by Rockworks software assuming each VES as a borehole.	90
Fig.(4.30):	a. The resistivity model generated by inverting profile No.1 with Topography, b.	92

	Lithological cross section constructed from interpreted resistivity value	
Fig.(4.31):	a. The resistivity model generated by inverting profile no 2 showing the resistivity	
	and IP models without topography, b. Lithological cross section constructed from	
	interpreted resistivity and IP value.	93
Fig. (5.1):	a. The total magnetic anomaly map, b. The RTP in the right side after removing	
	the diurnal and IGRF from the measured total magnetic field	98
Fig. (5.2):	a. Vertical gradient map, b. The total horizontal gradient calculated from	
	magnetic anomaly map to the right, with existing mine location symbol plot,	
	circles and ellipses are drowning to show areas have the same magnetic	
	characteristic's	99
Fig. (5.3):	RTP map with source edge symbols plot, with shaded relief image as a	
	background to show magnetic contact	100
Fig. (5.4):	Total horizontal gradient map as a shaded color map with the source edge simple	
	plotting	101
Fig. (5.5):	The analytical signal map showing the exact location of anomalies with a present	
	mining location and circles to show areas with the same magnetic signature	102
Fig. (5.6):	Selected profiles along major anomalies in the studied area, used for depth	
	calculation by 2-d analytical signal.	103
Fig. (5.7):	Depth map calculated along major anomalies in the studied area, calculated by 2-	
	d analytical signal	104
Fig. (5.8):	Depth map calculated from all the data measured in the studied area by the 2-d	
	analytical signal, with the same symbols in the same location to show the	
	difference	105
Fig.(5.9):	Classified map of the Euler deconvolution calculated from the RTP magnetic map	
	of the studied area (structural index (SI=zero))	107
Fig.(5.10):	Classified map of the Euler deconvolution calculated from the RTP magnetic map	
	of the studied area (structural index (SI =one))	108
Fig.(5.11):	The source depth map estimated by the Source Parameters Imaging techniques	
	presented as a shaded color relief map	109
Fig.(5.12):	Location of the dipoles detected in the study area analysis using the geosoft	
	program, the inflection point is in the mid distance between positive and negative	111

	parts of each anomaly	
Fig.(5.13):	Calculated depth map from 3-d analytical signal dipoles using the gridded dataset	
	of Wadi Alsahu Area	112
Fig.(5.14):	Dipole-Dipole Cross-section No.1 with topography shows the inverted resistivity	
	model, and the low resistivity zone supposed to be ore lenses	114
Fig.(5.15):	Dipole-Dipole Cross-section No.2 with topography shows the inverted resistivity	
	and IP models, we can differentiate two bodies supposed to be a disseminated	
	ores and a single lens supposed to be massive ore	114
Fig.(5.16):	Dipole-Dipole Cross-section No.3 with topography shows the inverted resistivity	
	and IP models, we can differentiate multi bodies supposed to be a disseminated	
	ore	115
Fig.(5.17):	Integrated interpretation map for the geological and geophysical results	116
Fig.(5.18):	a. The Magnetic Inversion Model of magnetic profile No.1 for the horizon traced	
	from the boundary of the resistivity layers, b. Geo-electric cross-section No.1	118
Fig.(5.19):	a. The Magnetic Inversion Model of magnetic profile 2 for the horizon traced	
	from the boundary of the resistivity and chargeability layers, b. Geo-Electric	
	Cross-section No.2	119
Fig.(5.20):	a. The Magnetic Inversion Model of magnetic profile No.3 for the horizon traced	
	from the boundary of the resistivity and chargeability layers, b. Geoelectric cross	
	section No.3	120

LIST OF TABLES

Table (2.1):	Average density and magnetic susceptibility of the massive and	
	disseminated Titanomagnetite deposits and host rocks	13
Table (3.1):	Resistivity's of common rocks and ore minerals (ohm-meters),	10
	after Milsom John, (2003)	38
Table (4.1):	Depth, thickness, and magnetic susceptibility of inverted	20
	Anomalies along measured data profiles	62
Table (4.2):	The depths and resistivity of the supposed low resistivity Ore	02
	zone	87

ABSTRACT

The present study deals with the application of geophysical investigations for mineral exploration purpose especially Titanomagnetite and manganese-iron ores. Two selected areas of different geological setting, the first study area is bounded by latitudes 22° 31′ 06.4″and 22° 38′ 46.4″ N and longitude 34° 58′ 35.86″ and 35° 2′ 47.08″ E, the second area selected for this study is bounded by latitudes 28° 58′ 13″ and 28° 59′ 5″ N and longitude 33° 22′ 15″ and 33° 23′ 4.5″ E. located west Sinai near to Abu Zeneima town, Egypt.

Magnetic qualitative interpretation is made for both areas for location and depth detection for supposed minerals, include the Reduction to pole and different filters like First vertical derivative, Magnetic susceptibility, analytical signal, Downward continuation at various depths, and source edge detection to detect the exact location of magnetic contacts

Quantitative magnetic processing is made for both areas to calculate the depth of the detected magnetic anomalies supposed to be ore bodies, I used 2-D extended Euler deconvolution ,2-D analytical signal, magnetic profile inversion, 3-d Euler deconvolution, source parameters imaging, and 3-d analytical signal

Vertical electrical sounding is used in the first area to detect maximum depth for low resistivity bodies assumed to be Titanomagnetite, inversion and modeling is need to estimate the equivalent geo-electric layer for each VES.

Electrical resistivity and induced polarization tomography have been made over selected profiles to detect zones of of massive ore bodies characterized by low resistivity and high chargeability ,and zones of dessiminated ore bodies characterized by moderate to high resistivity and moderate to high chargeability ,also a modeling process needed to estimate the equivalent earth model.

The subsurface presence of titanomagnetite at Korabkansi area is confirmed using different geophysical techneques magnetic and geoelectric, I can assume two differente zone enriched with the ore, The presence of manganese-iron ore in the subsurface also has been detected using both tools magnetic and geo-electric methods

The results of both qualitative and quantitative interpretations of magnetic and geoelectric data are combined to get the general view of the ore deposits abundance in both areas and there highlight there economic potentiality.