EVALUATION OF SERUM IL-23 LEVEL IN ACTIVE, STABLE AND NARROW BAND ULTRAVIOLET B TREATED VITILIGO

Thesis

Submitted For Partial Fulfillment of Master Degree in Dermatology, Venereology and Andrology

By

Omar Ala Dawod

M. B. Ch. B.
Baghdad University

Under Supervision of

Prof Dr. Mohamed Abd El-Rahim Abdallah

Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Prof. Dr Ghada Fathy Mohamad

Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2016

سورة البقرة الآية: ٣٢

Acknowledgment

First, and foremost, my deepest gratitude and thanks should be offered to "AUAH", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr. Mohamed abd El-Rahim Abdalla**, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine -Ain Shams University, for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to **Prof. Dr. Ghada Fathy Mohamad,** Professor of Dermatology, Venereology and Andrology, Faculty of Medicine-Ain Shams University for her efforts and time she has devoted for this work.

Last but not least, thanks to my Family and especially my great wife for helping me to finish this work.

Omar Ala Dawod

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	10
Introduction	1
Aim of the Work	16
Review of Literature	
Vitiligo	17
Narrow Band UVB	59
■ Interleukine-23 (IL-23)	75
Patients and Methods	
Results	
Discussion	
Summary128	
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Tables

Table No.	Title Page N	V o.
Table (1):	Typical Features of Segmental and	
	Nonsegmental Vitiligo	
Table (2):	Vitiligo disease activity score (VIDA)	
Table (3):	List of depigmenting agents	
Table (4):	Degree of erythema Dose increment	66
Table (5):	Skin types/initial NB-UVB dose according to	
	skin type	
Table (6):	Contraindications of NB-UVB	71
Table (7):	Human studies examining IL-17 biomarkers	
	in vitiligo	84
Table (8):	Biologic drugs targeting IL-23 and IL-17 in	
	psoriasis	87
Table (9):	Comparison between patients and controls	
	as regards age.	99
Table (10):	Comparison between patients with active	
	and stable vitiligo as regards age	100
Table (11):	Comparison between patients with active and	
	stable vitiligo with the control group as	
	regards sex.	101
Table (12):	Comparison between males and females	
	patients as regards S. IL-23 before NB-UVB	
	treatment.	102
Table (13):	Comparison between levels of S.IL-23 before	
	and after NB-UVB treatment in all patients	
	(active +stable)	104
Table (14):	Comparison between the patient group	
	(active + stable) and control group before	
	NB-UVB treatment as regards S. IL-23 level	106
Table (15):	Comparison between patients with active	
	and stable vitiligo as regards serum IL-23	
	level before NB:UVB.	107

List of Tables (Cont...)

Table No.	Title	Page No.
Table (16):	Comparison between levels of S. IL-23 and after NB-UVB treatment in	
	vitiligo group.	
Table (17):	Comparison between the levels of S. II	L-23 in
, ,	stable and NB-UVB treated vitiligo	
Table (18):	Comparison between patients with	
	vitiligo and controls as regards serum	i IL-23
	level before NB-UVB treatment	113
Table (19):	Comparison between patients with	stable
	vitiligo and controls as regards serum	
	level.	
Table (20):	Comparison between patients with	
	vitiligo and controls as regards serum	
m 11 (21)	level after NB-UVB treatment	
Table (21):	Comparison between (VETI) score	
	versus after NB-UVB treatment	
T-1-1- (00).	patients (active+ stable)	
Table (22):	Comparison between (VETI) score	
	versus after NB-UVB treatment in p with stable vitiligo	
Table (23).	Comparison between (VETI) score	
1 able (20).	versus after NB-UVB treatment in pa	
	with active vitiligo	
Table (24):	Correlation of age, disease duratio	
	VETI score with serum IL-23 level	
	NB-UVB treatment in all patients	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Inflammatory vitiligo	22
Figure (2):	Vitiligo ponctué. Confetti-like amela	
E' (9)	macules	
Figure (3):	Differentiation of T helper cell subse	
Figure (4):	Summary of the possible cellular humoral immune mechanisms of viti	
Figure (5):	Hypopigmentation (including trich and homogeneous lighter pigmentati	•
Figure (6):	Complete depigmentation with black and perifollicular pigmentation	k hair
Figure (7):	Complete depigmentation with black and without perifollicular pigmentation	k hair
Figure (8):	Complete depigmentation with composition of white and black hair with/wi	oound
	perifollicular pigmentation	45
Figure (9):	Complete depigmentation plus signification whitening	
Figure (10):	Depth of skin penetration of UV, v and infrared radiations	
Figure (11):	Schematic illustration of the IL-12 ar 23 receptor complexes	nd IL-
Figure (12):	Predicted site-I-II-III paradigm experimentally validated model of the	and
	receptor complex	
Figure (13):	Divergent but overlapping function	
	IL-23 in different models autoimmunity	
Figure (14):	Schematic representation of	
1 igure (14):	mechanisms by which IL-23 indirect	
	directly promotes tumorogenesis, gr	•
	and metastasis	

List of Figures (Cont...)

Fig. No.	Title Pa	ige No.
Figure (15):	Rule of nine	96
Figure (16):	Comparison between patients as controls as regards age.	
Figure (17):	Comparison between patients with acti and stable vitiligo as regards age	
Figure (18):	Comparison between patients with acti and stable vitiligo with the control gro- as regards sex	up
Figure (19):	Comparison between levels of S.IL-before versus after NB-UVB treatment all patients (active+stable)	in
Figure (20):	Comparison between the patient grown (active + stable) and control group before NB-UVB treatment as regards S. ILlevel.	ore 23
Figure (21):	Comparison between patients with acti and stable vitiligo as regards serum IL- level before NB:UVB	ve 23
Figure (22):	Comparison between levels of S. IL-before and after NB-UVB treatment active vitiligo group.	
Figure (23):	Comparison between the levels of S. IL-in stable and NB-UVB treated vitiligo	
Figure (24):	_	ive IL-
Figure (25):	Comparison between patients with stak vitiligo and controls as regard serum I 23 level.	ole

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (26):	Comparison between patients with vitiligo and controls as regards seru 23 level after NB-UVB treatment	ım IL-
Figure (27):	Comparison between (VETI) score versus after NB-UVB treatment patients (active+ stable)	in all
Figure (28):	Comparison between (VETI) score versus after NB-UVB treatment patients with stable vitiligo	nt in
Figure (29):	Comparison between (VETI) score versus after NB-UVB treatmer patients with active vitiligo	nt in
Figure (30):	Correlation of serum IL-23 level VETI score before NB-UVB treatment	with

List of Abbreviations

Abb.	Full term
<i>AA</i>	Arachidonic acid
	Angiotensin – Converting Enzyme
	American heart association
	Aminoimidazole -4- carboxamide ribonucleotide
AIDS	Acquired immunodeficiency syndrome
	Adenosine monophosphate kinase
	Antimicrobial peptides
AP-1	Activator protein -1
APCs	Antigen presenting cells
	Ankylosing spondylitis
<i>BAT</i>	Brown adipose tissue
<i>BCG</i>	Balillus Calmette-Guerin
<i>BMI</i>	Body mass index
<i>BP</i>	Blood pressure
<i>BSA</i>	Body surface area
CB-1	Cannabinoid-1 receptor
<i>CBD</i>	Cytokine binding domains
<i>CD</i>	Cluster of differentiation
<i>CVD</i>	Cardiovascular disease
DCs	Dendritic cells
DLQI	Dermatology Life Quality Index
<i>DM</i>	Diabetes Mellitus
<i>DPP</i>	Diabetes prevention program
<i>EAE</i>	Experimental autoimmune encephalomyelitis
EDTA	Ethylene diamine tetra-acetic acid
<i>EGF</i>	Epidermal growth factor
EGF-R	Epidermal growth factor receptor
	Enzyme linked immunosorbant assay
GBP-28.	Gelatin binding protein-28

List of Abbreviations (Cont...)

Abb.	Full term
GLUT4	Glucose transporter type 4
GM-CSF	Granulocyte macrophage colony stimulating factor
HDL	. High density lipoprotein
<i>HEV</i>	. High Endothelial Venules
HIV	.Human Immunodeficiency Virus
<i>HMW</i>	.High molecular weight
<i>IBD</i>	Inflammatory bowel disease
<i>ICAM</i>	Intercellular adhesion molecule
<i>Ig</i>	Immune globulin
<i>IGF-1</i>	Insulin growth factor-1
<i>IGT</i>	Impaired glucose tolerance
<i>IL</i>	. Interleukin
<i>ILs</i>	. Interleukins
<i>INF</i>	Interferon
iNOS	Inducible nitric oxide synthase
<i>IR</i>	Insulin resistance
kDa	Kilo Dalton
<i>LC</i>	Langerhans' cell
LCAT	Lecithin cholesterol acyltransferase
<i>LDL</i>	Low density lipoprotein
<i>LFA</i>	Lymphocyte functional antigen
<i>LPS</i>	Lipopolysaccharide
<i>LT</i>	Leukotriens
MCA	Methyl cholanthrene-A
MCP-1	Monocyte chemotactic protein-1
<i>MDA</i>	Malondialdehyde
<i>MHC</i>	Major histocompatibility complex
<i>MITF</i>	Microphthalmia-associated transcription factor
<i>MMPs</i>	$. Matrix\ metallo peptidases$

List of Abbreviations (Cont...)

Abb.	Full term
mRNA.	Messenger ribonucleic acid
<i>MS</i>	Metabolic syndrome
<i>MTX</i>	Methotrexate
NCEP	National cholesterol education program
NF-AT.	Nuclear factor of activated T cell
NF-κB	Nuclear Factor- кВ
<i>NGF</i>	Nerve growth factor
<i>NK</i>	Natural killer
<i>NO</i>	Nitric oxide
NSAID S	S Non-Steroidal Anti-inflammatory Drugs
	Plasminogen activator inhibitor-1
PASI	Psoriasis area and severity index
	Physician Global Assessment
<i>PLE</i>	Polymorphic light eruption
	Peroxisome proliferator- activated receptor
<i>PsA</i>	Psoriatic arthritis
PSORS	Psoriasis Susceptibility
PUVA	Psoralen + UVA
<i>RA</i>	Rheumatoid arthritis
Scf	Stem cell factor
_	Superoxide Dismutase
<i>SP</i>	Substance P
T regs	T regulatory cells
<i>TACE</i>	TNFa convertase enzyme
<i>TAS</i>	Total Antioxidant Status
Tc-1	T cytotoxic -1
<i>TCR</i>	T cell receptor
<i>TG</i>	Triglycerides
TGF-β	$Transforming\ growth\ factor$ - eta

List of Abbreviations (Cont...)

Abb.	Full term
<i>Th</i>	T-helper
<i>TLR</i>	Toll like receptor
<i>TNFR</i>	Tumor necrosis factor receptor
TNFSF	Tumor necrosis factor superfamily
<i>TNF-α</i>	Tumor necrosis factor-alpha
<i>TZD</i>	Thiazolidinedione
<i>UVA</i>	Ultraviolet A
<i>UVB</i>	Ultraviolet B
<i>VASI</i>	Vitiligo area scoring index
VCAM	Vascular cell adhesion molecule
VEGF	Vascular endothelial growth factor
VIDA	Vitiligo disease activity score
<i>VIP</i>	Vasoactive intestinal peptide
vit	Vitiligo
<i>VPF</i>	Vascular permeability factor
<i>WAT</i>	White adipose tissue
<i>WC</i>	Waist circumference
<i>WHO</i>	World Health Organization

INTRODUCTION

by the loss of functioning epidermal melanocytes and affects more than 0.5–1% of the worldwide population with devastating psychological and social consequences (*Feily*, 2014). The exact pathologic mechanism has not been clarified yet; however, the autoimmune hypothesis is the most widely accepted explanation (*Shin et al.*, 2010).

Vitiligo has been classified according to the clinical ground into two major forms, namely segmental vitiligo (S.V.) and non-segmental vitiligo (N.S.V.), the latter includes several variants (generalized, acro facial and universal), non segmental vitiligo typically evolves over time in both distribution and extension patterns (*Taieb and Picardo*, 2007).

Peripheral blood and skin biopsies of patients with vitiligo showed that T cells, mononuclear cells, proinflammatory cytokines and autoanti bodies can damage melanocytes (*Sandoval-Cruz et al., 2011*). Peripheral lesional cytotoxic T cells seem to be responsible for the depigmentation process which may produce targeted autoimmune tissue destruction (*Zamani et al., 2001*).

A significant change of epidermal cytokines in involved skin of patients with vitiligo compared with uninvolved skin and skin of healthy controls has been described (*Kim et al.*,

2011), among these proinflammatory cytokines is IL-23 which is a member of IL-12 family that activates the effector function of T helper 17 (TH 17) cells to promote the inflammatory responses, this cytokine induces the production of TH17 cells so it was thought that it mediates autoimmunity by secretion of IL17 family, it has been established that IL-23 is essential for the development of autoimmune diseases, including psoriatic skin inflammation, inflammatory bowel diseases auto immune diabetes and others (Croxford et al., 2012).

In patients with vitiligo increased levels of IL-17 (which is mediated by IL-23) in serum was observed suggesting that IL-17 is participating in the immune response in early onset of the disease (Duvallet et al., 2011), for this reason IL-23/TH-17 was considered as a relevant target in treatment of auto immune diseases and the biological agents blocking IL-23 or IL-17 are currently being developed, Ustekinumab is a mono clonal anti body targeting the common P40 subunit of IL-23 and IL-12 (Toussirot, 2012).

Phototherapy is the therapeutic use of ultraviolet irradiation without exogenous photosensitizer (*Rai and Srinivas*, 2007).

It is thought that its capability to induce T cell apoptosis is an indicator of clinical efficacy, furthermore, keratinocytes may be influenced to release other unidentified cytokines and factors, which suggests that UVB functions as an immune modulator, which may support the theory of autoimmune component in the pathogenesis of vitiligo (Noborio et al., 2006).