THE USE OF REMOTE SENSING TECHNIQUES AND GEOGRAPHICAL INFORMATION SYSTEM FOR MONITORING CULTIVATED AREA AND PRODUCTIVITY OF SOME FIELD CROPS

ABDELRAOUF MASSOUD ALI MASSOUD

B.Sc. Agric. Sc. (Agronomy), Kafr El-Sheick University, 2007M.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2012

A thesis submitted in partial fulfillment

of

The requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agriculture in Desert and Salt Affected Areas)

Arid Land Agricultural Graduated Studies and Research Institute Faculty of Agriculture Ain Shams University

Approval Sheet

THE USE OF REMOTE SENSING TECHNIQUES AND GEOGRAPHICAL INFORMATION SYSTEM FOR MONITORING CULTIVATED AREA AND PRODUCTIVITY OF SOME FIELD CROPS

ABDELRAOUF MASSOUD ALI MASSOUD

B.Sc. Agric. Sc. (Agronomy), Kafr El-Sheick University, 2007M.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2012

This thesis for Ph. D. degree has been approved by:

Dr. Mohamed Ismail Syed Ahmed	•••••
Head of Research in Soil, Water and E Institute, Agriculturul Research Centre	
Dr. Usama Ahmed El-Behairy Prof. of Horticulture, Faculty of Agricul	ture, Ain Shams University
Dr. Olfat Hassan EL-Bagory Prof. Emeritus of Agronomy, Faculty University	y of Agriculture, Ain Shame
Dr. Ayman Farid Abou-Hadid Prof. Emeritus of Horticulture, Facult University	y of Agriculture, Ain Shams

Date of Examination:22 / 12 / 2014

THE USE OF REMOTE SENSING TECHNIQUES AND GEOGRAPHICAL INFORMATION SYSTEM FOR MONITORING CULTIVATED AREA AND PRODUCTIVITY OF SOME FIELD CROPS

ABDELRAOUF MASSOUD ALI MASSOUD

B.Sc. Agric. Sc. (Agronomy), Kafr El-Sheick University, 2007M.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2012

Under the supervision of:

Dr. Ayman Farid Abou-Hadid

Prof. Emeritus of Horticulture, Department of Horticulture, Faculty of Agriculture, Ain Shams University (principle supervisor)

Dr. Olfat Hassan EL-Bagory

Prof. Emeritus of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Amin Aboelghar

Researcher, Application of Agriculture, Soil and Marine Division, National Authority for Remote Sensing and Space Science.

ABSTRACT

Abdelraouf Massoud Ali: The Use of Remote Sensing Techniques and Geographical Information System for Monitoring Cultivated Area and Productivity of some Field Crops. Unpublished Ph.D. Thesis, Arid Land Agricultural Graduated Studies and Research Institute, Agriculture in Desert and Salt Affected Areas, Faculty of Agriculture, Ain Shams University, 2015.

One of the main challenges in determining crop growth vigor or biomass from remotely-sensed images is the alignment of the acquisition date of the image with the optimal crop growth period. As discussed to increasing the temporal frequency of image acquisition addresses this problem but can be costly respecially, in the case of fine resolution (i.e. high spatial resolution) platforms.

However, with landsat being available at a relatively small cost (usually free (composite 16-day NDVI LANDSAT data (~30 m x 30 m pixel size) throughout the entire crop growth period was used for this research. This ensured a continuous vegetation index profile, which captured land use patterns (e.g. fallow, cropping before and during the growing period of winter crops. The measured 16-day aggregated NDVI LANDSAT was used as temporal input for quantifying and understanding the crop growth trajectory at each pixel. Standard and advanced image processing techniques were applied to the multi-date NDVI imagery These methods included geometric corrections, image enhancement and transformation, reprojection, supervised classification, and classification accuracy classification methodology and assessment. Temporal temporal algorithms were adapted, developed and tested at the shire level in order to determine crop area planted for different crop types

(e.g. wheat, sugar beets, Alfa Alfa, Potato and onion) at the end of the crop growing season as well as for early-season estimates.

the second objective of this research is to use remote sensing satellite data imagery to generate remotely-sensed empirical pre-harvest wheat and rice yield prediction models. The main input parameters of these models are spectral data either in form of spectral reflectance data that are released from the different land sat bands (, red, and near infrared) or in forms of spectral vegetation indices that are algebraic ratios generated from the spectral reflectance values. The other type of the input factors is Leaf Area Index (LAI) that is a biophysical parameter closely related to crop canopy spectral characteristics and was measured by LAI Plant Canopy Analyzer (PCA). The five vegetation indices that are calculated through different forms that mastered the band of near infra-red with the bands of red to produce Difference Vegetation Index (DVI), Infrared Percentage Vegetation Index (IPVI), Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI). The above mentioned factors were individually used as input factors for either simple regression modeling or for multi-regression modeling associated with the Leaf Area Index (LAI) in each model of yield prediction for wheat crop in each of their season of cultivation. All generated models are site specific limited to the area and the surrounding environment and could be applicable under similar conditions using the extra pollination approach. The study was carried out in Salheia project using the dataset from two wheat seasons 2012/2013, 2013/2014, The total wheat area was cultivated by Misr1. Molding and validation process were carried out for crop for each season independently. The generated models were validated through main step. the correlation coefficient that is released from the generated models, while the second one is the validation through testing the yield that is calculated through the generated models (modeled yield) against the yield that is reported from field. Testing modeled yield versus reported yield was carried out through common statistical test. the correlation coefficient for a direct regression analysis between modeled and predicted yield for each generated model. The correlation coefficient (r) of the generated models indicated that spectral bands (red and near infrared bands) showed high accuracy and sufficiency to predict the yield. This relationship

was proved through correlation coefficient of the generated models and through the generated models with the wheat for the two seasons. It is clear that using LAI with other spectral factor increased the accuracy of the generated models as shown from the validation process for all models. The models are applicable after 90 days from sowing date for similar cultivation management under the same environmental conditions.

ACKNOWLEDGMENT

All praises are due to God, who blessed me with kind professors and colleagues, and gave me the support to produce this thesis.

I would like to express my profound gratitude and sincere appreciation to **Prof. Dr. Ayman Farid Abou-Hadid,**, Prof. Emeritus of Horticulture, Faculty of Agriculture, Ain Shams University and Former Minister of Agriculture and Land Reclamation for his kind supervision, valuable guidance and real encouragement during the present investigation, continuous support in the course of this investigation and help during the preparation and writing this thesis.

I wish also to express my deepest thanks for Prof. Dr. Olfat Hassan El-Bagory, Prof. of Agronomy, Faculty of Agriculture, Ain Shams University, for her supervision, guidance and encouragement during the work of the study.

Gratful thanks to Professor **Dr. Mohamed Amin Aboelghar** associated prof. researcher of remote sensing applications in Agriculture. agricultural Application department, National Authority for Remote Sensing and Space Science (NARSS) for his help, valuable advices and encouragement during the work of this study.

My greatest debt is to **Prof.Dr. Mohamed Zaki El-Shinawy**, Professor of Vegetable Crops, Fac. Agric., Ain Shams University for supervising this work, providing all valuable suggestions, comments, scientific material for their fruitful, help, encouragement, cooperation and friendships.

Grateful thanks for **Dr. Abdelazeiz Belal**, head of soil department. and all staff members of agricultural Application, Soil and Marine Division, National Authority for Remote Sensing and Space Science (NARSS) for their fruitful, help, encouragement, cooperation and friendships.

My sincere thanks extend to **Dr. Mohammed Ahmed El-shirbeny,** researcher of remote sensing applications in Agriculture. agricultural Application department, National Authority for Remote Sensing and Space Science (NARSS) for his help, valuable advices and

encouragement during the work of this study.

I would like to thank NASA for data availability and I would like to thank 6th of October for Agricultural Projects Company, Egypt for their kind support and encouragement i would like interoduce my greatest thankfull for ALARI for their kind support and encouragement

I am particularly grateful to my family and my wife for this continuous encouragement during the duration of this study.

CONTENTS

	Page		
LIST OF TABLES	III		
LIST OF FIGURES	V		
INTRODUCTION	1		
REVIEW OF LITERATURE	4		
6.1- Remote Sensing in Agriculture	4		
6.2. Spatial Resolution of Satellite Imagery	7		
6.3- Temporal Resolution of Satellite Imagery	9		
6.4. Remotely Sensed Vegetation Indices	10		
6.5- Crop Discrimination from Satellite-based Images	13		
6.6. Traditional Classification Procedures in Remote Sensing	14		
6.7. Accuracy assessment	16		
6.7.1 Overall Accuracy	18		
6.8. Crop yield prediction model.	20		
6.9. Spatial modelling	34		
MATERIALS AND METHODS	39		
7.1. Crop Area Estimates Using Multi NDVI-Date Land sat Imagery	39		
7.1.1. Study Area Description	39		
7.1.2. Remote Sensing Data Availability	41		
7.1.2.1.Landsat Data 7 ETM	42		
7.1.2.2.LNDSAT 8 OLI	42		
7.1.3. Image Processing	44		
7.1.3.1.Atmospheric and Topographic Correction ATCOR	44		
7.1.4Single date multispectral imagery:-	45		
7.1.5.Multitemporal Normalize difference vegetation indices (NDVI)	45		
7.1.6.Ground Truth and Survey Data			
7.1.7Supervised classification:			

	7.1.8.Assessing Classification Accuracy	50
	7.1.8.1. Kappa Coefficient Analysis	51
	7.1.8.2. Overall accuracy	52
	7.1.8.3. User's accuracy	52
	7.1.9. Software	54
	7.1.9. 1. The Environment for Visualizing Images (ENVI 5. 1)	54
	7.1.9. 2 Atmospheric Correction (ATCOR10.0)	54
	7.1.9. 3.ARC MAP 10.1	54
	7.1.9. 4.Statistical Software	55
	7.2. Early-season Crop yield Estimates for Winter Crops in newer lands in Egypt using VIS Landsat Satellite Imagery 7.2.1. Field measurements.	56 56
	7.2.2 Plant sampling.	56
	7.2.3.Generation of estimator variables of wheat crop yield	56
	7.2.4. LAI measurement	58
	7.2.5. Satellite data specifications	59
	7.2.6. Vegetation Indices (VIs) calculation	59
	7.2.7. Statistical modeling	61
	7.2.7.1. Descriptive statistics	61
	7.2.7.2. Simple and Multiple Linear Regression (MLR) modeling	62
	7.3.Spatial Modeling	66
RE	SULTS AND DISCUSSION	68
	8.1. Crop area estimation	68
No.		Pages
	8.1.1. Crop area estimation for winter season 2013	68
	.8.1.2. Crop area estimation for winter season 2014	74
	8.2. Crop yield prediction models	82
	8.2. 1. Simple regression analysis for wheat season in 2013	82
	8.2. 1. 1. Simple-regression for Jan 2013 .	83
	8.2. 1.2.Simple regression Crop yield models Feb 2013	85

8.2. 2Multi-regression for wheat season in 2013	91
8.2. 2.1 Multi-regression for wheat season in January 2013	91
8.2. 2.2.Multi-regression for wheat season in February 2013	95
8.2.3 Simple regression analysis for wheat season in 2014	98
8.2.3.1Simple regression Crop yield models Jan 2014	98
8.2.3.2.Simple regression Crop yield models Feb 2014	101
8.2.3.3.Simple regression Crop yield models March 2014	104
8.2.4.Multi-regression for wheat season in January 2014	107
8.2.4.1.Multi regression Crop yield models Feb 2014	110
Spatial Modelling for wheat Crop in test Area	113
SUMMARY	119
REFERENCES	123
ARABIC SUMMARY	

LIST OF TABLES

No.		Pages
1.	characterization for landsat (ETM+)	42
2.	characterization for landsat8 (OLI)	43
3.	Available Landsat imagery for two seasons	45
4.	The total ground check point for winter season 2013	40
5.	The total ground check point for winter season 2014	50
6.	Available Landsat imagery for two seasons	57

7.	Kappa Coefficient and overall accuracy for crop area estimation from land sat	
	satellite images for winter season 2014	
		69
8.	Confusion Matrix for the Maximum Likelihood (ML) algorithm for sigle date	
	winter season 2013	69
9.	Confusion Matrix for the Maximum Likelihood (ML) algorithm for Multi	
	temporal NDVI winter season 2013	70
	Total area of the different winter crops in El-Salhia site season 2013	73
11.	Kappa Coefficient and overall accuracy for crop area estimation from land sat	
	satellite images for winter season 2014.	74
12.	Confusion Matrix for the Maximum Likelihood (ML) algorithm for sigle date	
	winter season 2014	74
13.	Confusion Matrix for the Maximum Likelihood (ML) algorithm for Multi	
	temporal NDVI winter season 2014.	75
14.	Total area of the different winter crops in El-Salhia site season	77
15.	5. Producer and user accuracy for single spectral land sat imagery 2013 for the	
	study area	79
16.	Producer and user accuracy for Multi NDVI land sat imagery 2013	79
No.		Pages
17.	Producer and user accuracy for single spectral land sat imagery 2014 for the	
	study area	79
18.	Producer and user accuracy for Multi NDVI land sat imagery 2014 for the study	
	area	79
19.	The generated simple regression models and the correlation coefficient for Jan	
	2013	83
20.	The generated simple regression models and the correlation coefficient for	
	February 2013	86
21.	The generated simple regression models and the correlation coefficient for March	
	2013	89
22.	The generated multi-regression models for wheat yield prediction in January	
	2013	92
23.	The generated multi-regression models for wheat yield prediction in February	
	2013	95

24.	The generated simple regression models and the correlation coefficient for Jan	
	2014	98
25.	The generated simple regression models and the correlation coefficient for	
	February 2014	101
26.	The generated simple regression models and the correlation coefficient for March	
	2014	104
27.	The generated multi-regression models for wheat yield prediction in January	
	2014	107
28.	The generated multi-regression models for wheat yield prediction in February	
	2014	110

LIST OF FIGURES

No.		Pages
1.	Location map of the study area	40
2.	Rainfall, temperature and sunshine diagram of Salhia area	41
3.	Illustrates the Structure of a Digital Image and Multispectral Image	43
4.	Single date NDVI for study area	46
5.	Multi temporal NDVI for the study area	47
6.	Descriptions for sample of ground truth point	49
7.	methodology for crop area estimation	53
8.	cell grid system to collect wheat sample season 2013 on the left and	
	saeson2014 on the right	57
9.	The apparatus of Global Position System (GPS)	58
10.	LAI-2000 plant canopy analyzer	59
11.	Derived vegetation indices from Landsat data	61
	Methodology for wheat crop yield prediction	66
13.	Model Builder diagram for wheat in the test area	67

14.	shows the results of Maximum Likelihood (ML) supervised classification	
	maps of the Multi temporal NDVI landsat imagery	71
15.	shows the results of Maximum Likelihood (ML) supervised	
	classification maps of the Multi temporal NDVI landsat imagery 2013	
		72
16.	Total area of the different winter crops in El-Salhia site season 2013	73
No.		Pages
17.	shows the results of Maximum Likelihood (ML) supervised	
	classification maps of the Multi temporal NDVI landsat imagery winter	
	season 2014	76
18.	Total area of the different winter crops in El-Salhia site season 2014	77
19.	NDVI profile for winter crops of the study area	80
20.	Crop area change increase and decrease from 213 and 2014	81
	Simple-regression for Jan 2013	84:85
21.	Validation Model (DVI)	84
22.	Validation Model (IPVI)	84
23.	Validation Model (RVI)	84
24.	Validation Model (NDVI)	84
25.	Validation Model (SAVI)	85
26.	Validation Model (LAI)	85
	Simple regression Crop yield models Feb 2013	87:88
27.	Validation Model (DVI)	87
28.	Validation Model (IPVI)	87
29.	Validation Model (RVI)	88
30.	Validation Model (NDVI)	88
31.	Validation Model (SAVI)	88
32.	Validation Model (LAI)	88
	Simple regression Crop yield models March 2013	90:91
33.	Validation Model (DVI)	90
34.	Validation Model (IPVI)	90
35.	Validation Model (RVI)	90
36.	Validation Model (NDVI)	90
37.	Validation Model (SAVI)	91
No.		Pages

	Multi-regression for wheat season in January 2013	93:94
38.	Validation Model (DVI&LAI))	93
39.	Validation Model (IPVI&LAI)	93
40.	Validation Model (RVI&LAI)	94
41.	Validation Model (NDVI&LAI)	94
42.	Validation Model (SAVI&LAI)	94
	Multi-regression for wheat season in February 2013	96:97
43.	Validation Model (DVI&LAI))	96
44.	Validation Model (IPVI&LAI)	96
45.	Validation Model (RVI&LAI)	97
46.	Validation Model (NDVI&LAI)	97
47.	Validation Model (SAVI&LAI)	97
	1Simple regression Crop yield models Jan 2014	99:100
48.	Validation Model (DVI)	99
49.	Validation Model (IPVI)	99
50.	Validation Model (RVI)	100
51.	Validation Model (NDVI)	100
52.	Validation Model (SAVI)	100
53.	Validation Model (LAI)	100
	Simple regression Crop yield models Feb 2014	102:103
54.	Validation Model (DVI)	102
55.	Validation Model (IPVI)	102
56.	Validation Model (RVI)	102
57.	Validation Model (NDVI)	102
58.	Validation Model (SAVI)	103
59.	Validation Model (LAI)	103
	Simple regression Crop yield models March 2014	105:106
No.		Pages
60.	Validation Model (DVI)	105
61.	Validation Model (IPVI)	105
62.	Validation Model (RVI)	106
63.	Validation Model (NDVI)	106
64.	Validation Model (SAVI)	106
	Multi-regression for wheat season in January 2014	108:109