

Ain Shams University Faculty of Medicine

Study of Enhanced Safety and Increased Efficiency of The New Modalities of Phacoemulsification (OZIL and ICE Technology)

Essay

Submitted for the partial fulfillment of Master Degree in Ophthalmology By

Dr. Emad Farouk Gergis Wans

Supervised By

Prof. Dr. Hassan El-Samaa Yossef Ez El-din

Professor of Ophthalmology, Head of Department of Ophthalmology, Faculty of Medicine, Ain Shams University

Dr. Ahmed Hassan Samir Assaf

Assistant Professor of Ophthalmology, Ain Shams University

Faculty of Medicine Ain Shams University Cairo 2009

Acknowledgement

Acknowledgements

I have the honour to be supervised by **Prof. Dr. Hassan El-Samaa**, Professor of ophthalmology, Head of department of ophthalmology, Faculty of Medicine, Ain-Shams University. I owe much to his valuable supervision, useful advice and continuous help.

Words not enough to express my great appreciation and my special thanks to **Prof. Dr. Ahmed Assaf**, Assistant Professor of ophthalmology, Faculty of Medicine, Ain-Shams University, In suggesting me the subject of this work, for his perfect guidance and detailed revision; without him this would not be satisfactory.

Contents

Contents

Acknowledgement	I
Contents	II
List of figures & tables	III
List of abbreviation	VII
Introduction	IX
Aim of the work	XII
Chapter 1: Phacoemulsification	1
Chapter 2: Pulse Shaping Technology	33
Chapter 3: Torsional Technology	81
Chapter 4: Transversal U/S Technology	121
Summary & Conclusion	87
References	124

List of figures & tables

List of figures

Figure	Title	Page
1	The role of cavitation in phacoemulsification	8
	efficiency	
2	Venturi pump	11
3	Peristaltic pump	11
4	Diaphragm pump	12
5	Kelman tip	15
6	Mackool micro tip	16
7	Phacoemulsification for cataract	21
8	Phaco prechop technique	28
9	Millisecond bursts prevent cavitational	35
	energy from stabilizing and avoid occlusion	
10	Standard square phaco impulse and 1-	37
	millisecond kick at the start of the pulse	
11	Cavitation at the Pulse Shaping Technology	39
	phaco tip	
12	The duty cycle	40
13	The Pulse duty cycle	41
14	Cross the 'Up Threshold' and actively using	48
	Fusion Fluidics as a tool	
15	The CASE feature of WhiteStar ICE	48
16	Post-occlusion surge is reduced by about 56%	50
	with chamber stabilization	

threshold and down threshold depending on clinical conditions	
clinical conditions	
18 Coaxial MICS with the Stellaris, performed	54
through a 1.8 mm incision	
19 Six crystal hand piece	54
20 Phacoemulsification with the Stellaris	56
platform	
21 The Stellaris' needle and sleeve were	57
optimized for micro-coaxial	
phacoemulsification	
The thermocouple thermometer wire	76
measures wound temperature during	
bimanual phacoemulsification	
23 Bimanual microincisional with the pulse	76
shaping technology	
24 Traditional phaco versus Torsional phaco	83
25 Using continuous torsional increases	83
efficiency of emulsification	
26 Torsional phaco limits movement of the tip	84
shaft of the torsional hand piece	
27 Rotating the shaft of the Kelman style phaco	84
needle	
28 Ozil TM , Infiniti TM , Neosonix TM and Legacy TM	85

	hand pieces	
29	Micro sleeve versus ultra sleeve	86
30	Torsional hand piece with the tapered Kelman	88
	angled tip	
31	The Kelman 45 tip enhances torsional cutting	88
	efficacy	
32	Angled tip's ability to emulsify deeper into	89
	the nucleus than straight phaco tips	
33	AcrySof toric IOL	91
34	The D cartridge was designed to fit inside a	91
	"square" 2.2 mm incision A 2.2 mm incision	
35	following IOL implantation through a D	92
	cartridge and the Monarch III delivery system	
36	Repulsion from traditional ultrasound	95
37	Little or no repulsion from torsional phaco	95
38	The change in incision temperature with	102
	continuous torsional and traditional	
39	temperature differences of traditional	103
	ultrasound versus torsional	
40	The followability and safety of using	107
	torsional ultrasound in an eye with an iris	
	made floppy by the use of Flomax	
41	Torsional increases nuclear followability	110

42	Visual acuity results at 30 days postoperatively	112
	postoperatively	
43	A 20% difference in balanced salt solution	114
	used between torsional cases and longitudinal	
	cases	
44	Material stays at the torsional tip	117
45	Greatly improved thermal safety profile is	119
	beneficial when sculpting on dense lenses	
46	Torsional increases efficiency and reduces	119
	turbulence even on dense nuclei	
47	Phaco tip with the Transversal Ultrasound	123
	technology moves in an elliptical fashion	
48	Ellips hand piece with a 20 gauge phaco tip	123

List of tables

1	An example of the system's display of phaco		
	settings with variable WhiteStar and ICE	35	
_	Variable lettered settings on the WhiteStar		
2	correspond to ON/OFF times and determine	41	
	corresponding duty cycle		

List of abbreviation

List of abbreviations

ASCRS	American Society of cataract and Refractive surgery
BCVA	Best Corrected Visual Acuity
BSS	Balanced salt solution
CASE	Chamber Automated Stabilization Environment
CDC	Crater divide and conquer
CDE	Cumulative delivered energy
Cm	Centimeter
D	Diopter
DCN	Divide and conquer nucleofractis
ECCE	Extra-Capsular Cataract Extraction
I/A	Irrigation and aspiration
ICCE	Intra-capsular Cataract Extraction
ICE	Increased Control and Efficiency
IOL	Intra-ocular lens
J	Joule
KHz	Kilo Hertz
Mg	Milligram
MICS	Micro-Incision Cataract Surgery
mL	milliliter
ml/min	milliliter per minute
mm	millimeter
mmHg	millimeter mercury
ms	milliseconds

No	Number
Phaco	Phacoemulsification
POP	Pre-occlusion phacoemulsification
TDC	Trench divide and conquer
UCVA	Uncorrected Visual Acuity
Um	Micrometer
U/S	Ultrasound
YAG	Yttrium Aluminum Garnet

Introduction

Introduction

Phacoemulsification technique uses ultrasonic waves to emulsify the nucleus of the crystalline lens to remove the cataract through a small incision. The modern surgery eliminated the need for an extended hospital stay and made the surgery less painful.

Phacoemulsification is a procedure in which an ultrasonic device is used to break up and then remove a cloudy lens from the eye to improve vision. A foldable intraocular lens implant is placed permanently (**Buettner et al; 2002**).

New modalities of phacoemulsification: The favorite phaco techniques to enhance safety and increase efficiency include:.The Ozil Torsional Phacoemulsification Technology

.The WhiteStar ICE Technology (Packard, 2006)

The Ozil torsional phacoemulsification greatly reduces the repulsion of nuclear material from the phaco tip. Less repulsion at the tip means that the lenticular material stays on the tip and the tip therefore is kept in an occluded or nearly occluded state. The greater occlusion in turn decreases turbulence in the anterior chamber increase the efficiency of the lens' removal. The shearing action of the tip makes it more efficient in removing material, because each side-to-side movement emulsifies material (Allen, 2006).