ACUTE RIGHT VENTRICULAR FAILURE IN INTENSIVE CARE PATIENTS

Essay

Submitted for partial fulfillment of master degree

In intensive care medicine

By / Mohammed Saad Khalaf M.B.B.CH

under supervision of

Prof. Dr. Mohammed Reda Abd El Gawad

Professor of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

Dr. Hala Ezzat Ali Eid

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

Dr. Tamer Nabil Ibrahim

Lecturer of of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

Ain Shams University

2011

فشل البطين الأيمن الحاد في مرضى الرعاية المركزة

رسالة توطئة للحصول علي درجة الماجستير في الرعاية المركزة

مقدمة من

طبيب/ محمد سعد خلف بكالوريوس الطب و الجراحة

تحت إشراف

أد محمد رضا عبدالجواد

أستاذ التخدير و الرعاية المركزة كلية الطب جامعة عين شمس

د. هالة عزت على عيد

أستاذ مساعد التخدير و الرعاية المركزة كلية الطب جامعة عين شمس

د. تامر نبیل ابراهیم

مدرس التخدير والرعاية المركزة كلية الطب جامعة عين شمس

> جامعة عين شمس ۲۰۱۰

Acute right ventricular failure (RVF) is a frequent and serious clinical challenge in the intensive care unit. The presence of acute RVF not only carries substantial morbidity and mortality, but also complicates the use of commonly used treatment strategies in critically ill patients.

Acute RVF is a complex clinical syndrome that can result from any structural or functional cardiac and noncardiac disorder that impairs the ability of the right heart to fill or eject appropriately and is characterized by new onset or gradually or rapidly worsening RV signs and symptoms requiring urgent therapy irrespective of the underlying cause. It is estimated to account for 3% of all acute heart failure admissions and confers worse mortality rates than acutely decompensated LVF.

The most common etiologies of RVF in the ICU are left ventricular (LV) failure, RV ischemia, acute pulmonary embolism (PE), pulmonary hypertension (PH), sepsis, acute lung injury, cardiac tamponade, and post-cardiothoracic surgery states. Arrhythmias and pericardial, congenital, and/or valvular heart disease may also contribute

RV dysfunction occurs directly due to cardiodepressant effects of proinflammatory cytokines, cardiac microthrombi, and ischemia and/or arrhythmias or indirectly due to LV dysfunction, afterload increases from endothelial dysfunction, HPV, pulmonary emboli, and/or pulmonary microthrombi, as well as pre-load decreases (induced or aggravated by capillary leak syndrome). Mechanical ventilation contributes to RV dysfunction by negatively affecting pre-load and/or afterload.

LV dysfunction induces RV dysfunction via afterload increase, and/or displacement of the interventricular septum toward the RV with subsequent impairment of RV filling (known as ventricular

CONTENTS

Title	Page No.
Introduction.	1
Anatomical and physiological considerations.	3
Etiology and pathophysiology.	20
Diagnosis and evaluation.	53
Treatment and management strategies.	81
Summary.	111
References.	114
Arabic summary.	

List of Abbreviations

6 MWT	6 minute walk time
AC	Anticoagulation
ANA	Antinuclear antibody test
Ao	Aorta
ARDS	Acute respiratory distress syndrome
ARVD	Arrhythmogenic right heart dysplasia
AS	Aortic sac
ASD	Atrial septal defect
AV	Atrioventricular
AVV	Atrioventricular valves
ACC	American College of Cardiology
ACE	Angiotensin-converting enzyme
AHA	American heart association
A HA/ACC	American Heart Association/ American College of Cardiology
ATII	angiotensin II
BAS	Balloon atrial septostomy
BNP	B-type natriuretic peptide
CABG	Coronayangio bypass graft
cAMP	Cyclic Adenosine monophosphate
CCBs	Calcium channel blockers
cGMP	Cyclic guanosine monophosphate
CHD	Congenital heart disease
CHD/VHD	Congenital/valvular heart disease;
CHF	Congestive heart failure
CI	Cardiac index
CINC1	cytokine induced neutrophil chemoattractant
CO	Cardiac output
COPD	Chronic obstructive pulmonary disease
COX2	cyclooxygenase 2
CRT	cardiac resynchronization therapy
СТ	Computed tomography
CTPA	CT pulmonary angiography
CTD	Connective tissue disease
СТЕРН	Chronic thromboembolic PH
cTnI	Cardiac troponin I
CVP	Centra venous pressure

DA	Ductus arteriosus
DSA	Digital subtraction angiography
ECG	Electrocardiogram
ECMO	Extracorporeal membrane oxygenation
EDP	End-diastolic pressure
ERB	Endothelin receptor blockers
ESC	European Society of Cardiology
ET-1	Endothelin-1
FRC	Functional residual capacity
HF	Heart failure
HPV	Hypoxic pulmonary vasoconstriction
HTN	Hypertension
IABP	Intra-aortic balloon pump
ICU	Intensive care unit
ITP	Intrathoracic pressure
iNO	Inhaled nitric oxide
Iv	Intravenous
IVC	Inferior vena cava
LA	Left atrium
LAP	Left atrial pressure
LCA	Left coronary artery
LSCA	Left subclavian artery
LV	Left ventricle
LVAD	Left Ventricular assist device
LVAD/RVAD	Left/right ventricular assist device
LVF	Left ventricular failure
LVEF	Left ventricular ejection fraction
MAP	Moan arterial pressure
MI	Myocardial infarction
MRI	Magnetic resonance imaging
MPAP	Mean pulmonary arterial pressure
NO	Nitric oxid
NS	Non-significant
NYHA	New york heart association class
PA	Pulmonary artery
PACs	Pulmonary artery catheters
PAH	Pulmonary arterial hypertension

PAP	Pulmonary arterial pressur
PAWP	P ulmonary artery wedge pressure
PBW	Predicted body weight
PCI	Percutaneous coronary intervention
PCWP	pulmonary artery capillary wedge pressure
PDE5	Phosphodiesterase 5
PE	Pulmonary embolism
PEEP	Positive end-expiratory pressur
PGH2	prostaglandin H2
PH	Pulmonary hypertension
PIOPED II	Prospective Investigation of Pulmonary Embolism Diagnosis II
PLA	Phospholipase A2
PMN	polymorphonuclear
P_{plat}	Plateau pressure
PPHT	Porto-pulmonary hypertension
P_{TA}	Trans- airway pressure
PVR	Pulmonary vascular Resistance
RA	Right atrium
RAP	Right atrial pressure
RCA	Right coronary artery
RCT	Randomized placebo controlled trial
RHF	Right heart failure
RPA	Right main pulmonary artery
RRT	Renal replacement therapy
RSCA	Right subclavian artery
RT	Randomized trial
RV	Right ventricle
RVAD	Right ventricular assist device
RVD	Right ventricular dysplasia
RVEDV	Right ventricularend-diastolic volume
RVEF	Right ventricular ejection fraction
RVF	Right ventricular failure
RVMI	Right ventricle myocardial infarction
RVSP	Right ventricular systolic pressure
S1Q3T3	Large S wave in lead I, a large Q wave in lead III and an inverted T wave in lead III
SA	Sinuatrial
SVR	Systemic vascular resistance

TAPSE	tricuspid annular plane systolic excursion.
99mTc-DTPA	Technetium-99m labelled diethylenetriamine pentaacetate
TGA	transposition of the great arteries
TGF	tumor growth factor
TLC	Total lung capacity
TOF	Tetralogy of Fallot
TP	Tracheal pressure
TR	Tricuspid regurgitation
TSM	Trabecula septum marginalis
TTE	Trancethiracic echocardiography
TV	Tricuspid valve
VADs	ventricular assist devices
VO2	Maximal oxygen consumption
V/Q	Ventilation-perfusion
V_T	Tidal volume

List Of Figures

Fig. No.	Title	Page No
Fig. (1):	Human cardiac development	5
Fig. (2):	Diagram of the right ventricle demonstrating its 3 major chamber components	6
Fig. (3):	Right ventricular anatomy	7
Fig. (4):	Anterior surface of the heart showing coronary arteries	9
Fig. (5):	Illustration of how the geometry of the right ventricle (RV) changes with contraction and is affected by pressure overload.	13
Fig. (6):	Comparison of pressure volume loops in the LV (left) and RV (right).	14
Fig. (7):	The response of the right and left ventricle to experimental increase in pressure afterload.	17
Fig. (8):	Relationship between lung volume and pulmonary vascular resistance	18
Fig. (9):	Effect of increase in FRC on alveolar and extraalveolar vessels	19
Fig. (10):	Limits of right ventricle (RV) contractile function in the setting of increasing pulmonary artery	32
Fig. (11):	Pathophysiology of right ventricular failure due to pulmonary arterial hypertension	33
Fig. (12):	Substances produced in the lungs that are thought to be dysregulated in pulmonary hypertension	35
Fig. (13):	Pathophysiology of RVF	41
Fig. (14):	Postulated interactions between ventricular remodeling, neurohormonal and cytokine activation, and gene expression in the setting of RV failure	43
Fig. (15):	Ventricular interdependence in RV failure	45
Fig. (17):	Hemodynamics in progressive pulmonary vascular disease	46
Fig. (18):	Evaluation of RVF.	55
Fig. (19):	Electrocardiogram (ECG) showing signs of PE	58
Fig. (20):	Electrocardiogram (ECG) showing signs inferior MI	59

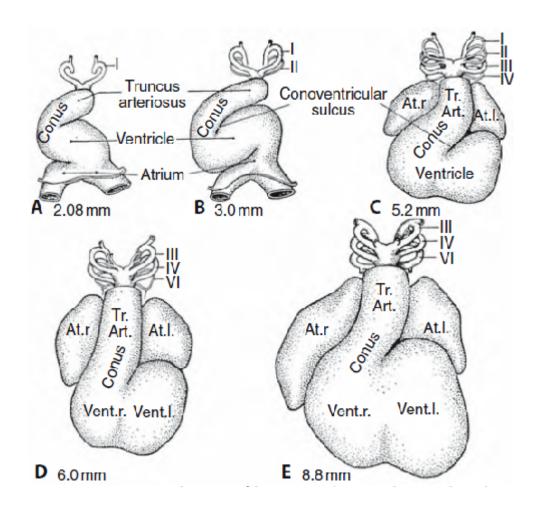
List Of Figures Cont.....

Fig. (21):	Postero-anterior chest roentgenogram in a patient with idiopathic PAH	60
Fig. (22):	Postero-anterior chest roentgenogram in a patient with massive PE	61
Fig. (23):	Proposed mechanism of cardiac biomarker elevation in RVF	62
Fig. (24):	Example of acute cor pulmonale in two patients PE and ARDS	66
Fig. (25):	Cardiac MRI evaluation of a patient with RVMI	<u>69</u>
Fig. (26):	Coronal time-resolved magnetic resonance angiography in a normal subject (A) and in a patient with idiopathic pulmonary hypertension (B)	70
Fig. (27):	Ventilation (V; top row) and perfusion (P; bottom row) lung scintigraphy in a patient with thromboembolic disease	73
Fig. (28):	Digital subtraction angiography of the left pulmonary circulation in a patient with chronic thromboembolic pulmonary hypertension	75
Fig. (29):	Coronal maximum intensity projection reconstruction of a computed tomography pulmonary angiogram in a patient with multiple, bilateral pulmonary embolisms (arrows)	76
Fig. (30):	Transverse contrast-enhanced CTPA in a 69-year-old man with pulmonary embolism associated with RVD	78
Fig. (31):	Cardiac computed tomography in a patient with severe right atrial (RA) and right ventricular (RV) enlargement due to tricuspid regurgitation	79
Fig. (32):	Categorization of Therapeutic Interventions Aimed at Improving RV Function in ICU	81
Fig. (33):	Treatment of Acute RVF in the ICU	82
Fig. (34):	Management of PAH	87
Fig. (35):	Volume administration in RVF	91
Fig. (36):	Inotropic agents used for augmenting RV function	93
Fig. (37):	Hemodynamic support in RVF	97
Fig. (38):	Schematic depicting the mode of action of vasodilator agents used in the treatment of pulmonary hypertension	98
Fig. (39):	Overall management of decompensated RV failure	109

List Of Tables

Table. No.	Title	Page No
Tab. (1):	Comparison of Normal RV and LV Structure and Function adapted from	11
Tab. (2):	Revised World Health Organization Classification of Pulmonary Hypertension	23
Tab. (3):	Causes of Acute RV Failure in the Intensive Care Unit	27
Tab. (4):	symptoms and signs of RV failure	56
Tab. (5):	ECG Changes in RV Failure	58
Tab.(6):	Radiographic Findings Associated With RV Failure	60
Tab. (7):	Overview of Serum Markers Used in the Diagnosis of Acute RV Failure in the Intensive Care Unit .	63
Tab. (8):	Overview of Hemodynamic Parameters, and Echocardiographic Variables Used in the Diagnosis of Acute RV Failure in the Intensive Care Unit	67
Tab. (9):	PIOPED lung scan interpretation criteria (modified)	72
Tab. (10):	New Medications for PAH (pulmonary vasodilators).	88

FETAL AND NEONATAL DEVELOPMENT OF RIGHT VENTRICLE


A basic understanding of embryology is helpful in the study of cardiovascular and congenital heart disease. The Right Ventricle (RV) and RV outflow tract are derived from the anterior heart field, whereas the left ventricle (LV) and the atrial chambers are derived from the primary heart field (*Zaffran et al., 2004*).

By the 3rd week of human gestation, passive diffusion of oxygen into the developing embryo becomes insufficient to support metabolism, blood has formed, and the primitive heart tube has begun beating; by the end of the 4th week, active circulation begins. Distinct components of the pulmonary and systemic circulation emerge from folding and twisting of the heart tube between the 3rd and 5th weeks of gestation (fig. 1), under control of a complex signaling network that includes the retinoic acid and neuregulin pathways. Soon after, the RV and pulmonary circulation begin to separate from the LV and systemic circulation by formation of the interventricular septum from the endocardial cushion, and the valves develop. At birth, full septation of the interatrial septum is normally complete, with only the foramen ovale remaining as a potential shunt between the right and left atria (*Moorman et al.*, 2003).

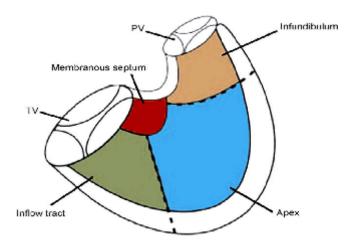
In the embryo and fetus, the RV is the dominant chamber, accounting for about 60% of total cardiac output. Because the embryo receives oxygen and nutrients from the placenta, only 15%-25% of total cardiac output enters the lungs. The remainder of right sided cardiac output is diverted to the systemic circulation via the foramen ovale to the left atrium and via the ductus arteriosus from the pulmonary artery to the

aorta. Between 40%-60% of descending aortic flow enters the placenta via the umbilical artery, and then returns via the umbilical vein to the liver or through the ductus venosus to the inferior vena cava (*Kiserud et al.*, 2004).

At birth, pulmonary vascular resistance (PVR) falls rapidly after expansion and oxygenation of the lungs, and RV cardiac output begins to flow predominantly through the pulmonary artery into the lungs. At that point, rising left atrial pressure seals off the one way "flap valve" of the foramen ovale. At birth, RV pressures still exceed systemic pressures, but these begin to fall over the next few hours to days. Shortly thereafter, the ductus arteriosus, under control of prostaglandin, begins to close, the LV hypertrophies as it takes over the systemic circulation, and the RV atrophies. By 3 weeks of age, pulmonary pressure has normally fallen below systemic pressure, and by adulthood the normal RV is incapable of generating more than 40-60 mmHg acutely (*Greyson*, 2010).

Fig.(1): Ventral views of human embryonic hearts that show bending of cardiac tube and establishment of major anatomic components.

At., atrium; l., left; r., right; Tr. Art., truncus arteriosus. (Adapted from **Srivastava**, **2006**).


RIGHT VENTRICLE ANATOMY

The anatomy of the RV is both unique and complex. The RV appears triangular when viewed laterally, whereas in cross-section, it appears crescent shaped. Although the RV appears smaller than the LV in the four-chamber view, RV volume is, in fact, larger than the LV volume. Based on magnetic resonance imaging, the normal range of RV end-diastolic volume (RVEDV) is 49–101 mL/m2 (males, 55–105 mL/m2; females, 48–87 mL/m2), whereas the normal range of LV end-diastolic

volume is 44–89 mL/m2 (males,47–92 mL/m2; females, 41–81 mL/m2) (*Haddad et al., 2009*).

RV muscle mass is approximately one-sixth that of the LV explained by different loading conditions, as it pumps against approximately one-sixth the resistance of the LV. In childhood, there is a progressive regression of RV hypertrophy as PVR decreases (*Per Lindqvist et al.*, 2008)

The RV can be described in terms of 3 components (fig 2): (1) the inlet, which consists of the tricuspid valve, chordae tendineae, and papillary muscles; (2) the trabeculated apical myocardium; and (3) the infundibulum, or conus, which corresponds to the smooth myocardial outflow region. In the study of congenital heart disease (CHD), this division seems to be more practical than the traditional division of the RV into sinus and conus components. Additionally, the RV can also be divided into anterior, lateral, and inferior walls, as well as basal, mid, and apical sections (*Anderson et al.*, 2005).

(Fig.2): Diagram of the right ventricle demonstrating its 3 major chamber components; inflow tract, infundibulum (outflow tract), and apex. (Adapted from Horton et al., 2009)