Ischemic stroke among patients with metabolic syndrome with or without type 2 diabetes mellitus

Thesis
Submitted for The partial fulfillment of Doctorate Degree of
Neurology

By Mohamed Mohamed Tawfik (M.B.B.Ch., M.Sc)

Supervised by

Prof. Taha Kamel Aloush

Professor of Neurology Faculty of Medicine Ain Shams University

Prof. Nagia Ali Fahmy

Professor of Neurology Faculty of Medicine Ain Shams University

Prof. Azza Abd-ElNaser Abd-ElAziz

Professor of Neurology Faculty of Medicine Ain Shams University

Dr. Rania Sayed Abd El-Baki

Ass.Professor of Internal Medicine & Endocrinology Faculty of Medicine Ain Shams University

Dr. Doaa Abdallah El-Aidy

Lecturer of Neurology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University

السكتات الدماغية في مرضى المتلازمة الأيضية في وجود أو عدم وجود النوع الثاني من مرض السكرى رسالة توطئة للمصول على درجة الدكتوراة في أمراض المخ و الأعصاب

مقدمة من الطبيب/ محمد محمد توفيق البغدادى ماجستير أمراض المخوالاً عصاب والطب النفسى تحت إشراف

الأستاذة الدكتورة/عزة عبدالناصر عبدالعزيز

أستاذأم إض المنح والأعصاب كلية الطب-جامعة عبن شمس

الأستاذ الدكتور/ طه كامل علوش

أستاذ أمراض المنح والأعصاب كلية الطب-جامعة عين شمس

الدكتورة/ رانيا سيد عبد الباقى

أستاذ مساعد أمراض الباطنة والغدد الصماء كلية الطب-جامعة عين شمس

الأستاذة الدكتورة/ناجية على فهمى

أستاذ أمراض المنح والأعصاب كلية الطب-جامعة عين شمس

الدكتورة/ دعاء عبد الله العايدي

مدرسأمراض المخوالأعصاب
كلية الطب
كلية الطب
جامعة عين شمس

2015

Acknowledgement

First and before all I thank **God**. I thank him for his great mercy, generous blesses, and for his continuous gifts.

I would like to thank **Prof. Taha Kamel Aloush** Professor of Neurology, Ain Shams University, who was a kind great supportive teacher and father.

Words cannot express the depth of my gratitude to my **Prof. Azza Abd-ElNaser Abd-ElAziz** Professor of Neurology, Ain Shams University, for her generous support and continuous encouragement during this work.

I would like to express my deepest gratitude to **Prof.**Nagia Ali Fahmy Professor of Neurology, Ain Shams University, for her willing help, patience, and support throughout the work.

I would like to thank **Dr. Rania Sayed Abd El-Baki** Ass.Professor of Internal Medicine & Endocrinology, Ain Shams University, for her support and advice.

I am also very grateful to **Dr. Doaa Abdallah El-Aidy** Lecturer of Neurology, Ain Shams University, for her sincere and meticulous supervision and support.

Last but not least, I want to extend my genuine thanks and gratefulness to my family especially my great mother who was always encouraging, my loving wife who was always supportive and helpful, my dear sons who were my motive, and my wife's family for their great supportiveness.

Contents

Acknowledgment	I
List of Abbreviations	II
List of Figures	V
List of Tables	IX
Introduction	1
Aim of the Work	7
Chapter 1: Metabolic Syndrome; Pathophysiology and R to Cerebrovascular Stroke	
Chapter 2: Pathophysiology of Type 2 Diabetes Mellitus	s41
Chapter 3: Histopathological, Pathophysiological, and Cl Characteristics of Cerebrovascular Stroke in Type 2 Diab Mellitus	oetes
Subjects and Methods	77
Results	86
Discussion	112
Summary	130
Recommendations	135
References	137
Appendix	159
Arabic Summary	

List of Abbreviations

(11β-HSD1)	11β-hydroxysteroid dehydrogenase type 1	
(5-HT)	5-hydroxytryptamine	
(AACE)	American Association of Clinical	
	Endocrinologists	
(ACA)	Anterior cerebral arteries	
(ADRB)	β-adrenergic receptors	
(AGEs)	Advanced glycosylation end products	
(apoB)	Apolipoprotein B	
(ARIC)	Atherosclerosis Risk in Communities	
(BA)	Basilar artery	
(BMI)	Body mass index	
(CD36)	Cluster of differentiation 36	
(CHAOS)	Coronary artery disease, hypertension,	
	atherosclerosis, obesity, stroke	
(cm)	Centimeter	
(CRP)	C-reactive protein	
(CT)	Computed tomography	
(CVD)	Cardiovascular diseases	
(DAG)	Diacylglycerol	
(DWMH)	Deep white matter hyperintensity	
(ECG)	Electrocardiogram	
(EF)	Ejection fraction	
(ENHP)	Egyptian National Hypertension Project	
(eNOS)	Endothelial nitric oxide synthase	
(ER)	Endoplasmic reticulum	
(ET-1)	Endothelin-1	
(FFA)	Free fatty acids	
(FPG)	Fasting plasma glucose	
(G-6-P)	Glucose 6-phosphate	
(GIP)	Glucose-dependent insulinotropic peptide	
(GLP-1)	Glucagon-like peptide1	
(GLUT4)	Glucose transporter 4	

(HbA1c)	Hemoglobin A1C	
(HDL)	High density lipoprotein cholesterol	
(HK)	Hexokinase	
(HPA)	Hypothalamo-hypophyseal-adrenal axis	
(HTN)	Hypertension	
(IAPP)	Islet associated polypeptide	
(ICA)	Internal carotid artery	
(ICS)	Intracranial stenosis	
(IDF)	International Diabetes Federation	
(IFG)	Impaired fasting glucose	
(IGT)	Impaired glucose tolerance	
(IL6)	Interleukin-6	
(IMT)	Intima-media thickening	
(IRS)	Insulin receptor substrates	
(ISHD)	Ischemic heart disease	
(JNK)	Jun kinase	
(kg/m^2)	Kilogram/meter ²	
(LAD)	Left atrial diameter	
(LCFA)	Long chain fatty acid	
(LDL)	Low-density lipoprotein cholesterol	
(LVH)	Left ventricular hypertrophy	
(MAPK)	Mitogen-activated protein kinase	
(MCA)	Middle cerebral arteries	
(mg/dL)	Milligram/deciliter	
(MI)	Myocardial infarction	
(mm Hg)	Millimeter mercury	
(mmol/L)	Millimole/liter	
(MRA)	Magnetic resonance angiography	
(MRI)	Magnetic resonance imaging	
(NASCET)	North American Symptomatic Carotid	
	Endarterectomy Trial	
(NCEP	National Cholesterol Education Program	
ATPIII)	Adult Treatment Panel III	
(NIHSS)	National Institutes of Health Stroke Scale	
(NO)	Nitric oxide	

(OGTT)	Oral glucose tolerance test	
(PAI-1)	Plasminogen activator inhibitor-1	
(PC)	Pyruvate carboxylase	
(PCA)	Posterior cerebral arteries	
(PDH)	Pyruvate dehydrogenase	
(PDPK-1)	3-phosphoinositide-dependent protein kinase-1	
(PFK-1)	Phosphofructo-1-kinase	
(PI3-K)	Phosphoinositide 3-kinase	
(PKB)	Protein Kinase B also known as (Akt)	
(PKC)	Protein kinase C	
(PPAR γ)	Peroxisome proliferator-activated receptor	
(PVH)	Periventricular hyperintensity	
(RAGE)	Receptors for advanced glycosylation	
	endproducts	
(RAS)	Renin-Angiotensin system	
(RBP4)	Retinol-binding protein 4	
(ROS)	Reactive oxygen species	
(T2DM)	Type 2 Diabetes mellitus	
(TAFI)	Thrombin-activatable fibrinolysis inhibitor	
(TCD)	Transcranial Doppler sonography	
(TGF-β)	Transforming growth factor-β	
(TGs)	Triglycerides	
(TIAs)	Transient ischemic attacks	
(TNF-α)	Tumor necrosis factor-α	
(TOAST)	Trial of Org10172 in Acute Stroke Treatment	
(TOF)	Three-dimensional Time-Of-Flight	
(UDP-	Uridine diphosphate N-acetylglucosamine	
GlcNAc)		
(VCAM-1)	Vascular cell adhesion molecules	
(VLDL)	Very low density lipoprotein cholesterol	
(WASID)	Warfarin-Aspirin Symptomatic Intracranial	
	Disease	
(WHO)	World Health Organization	
(µg/min)	Microgram/minute	

List of Figures

Figure (1)	Interplay of metabolic syndrome risk factors.	Page 17
Figure (2)	Randle cycle.	Page 47
Figure (3)	Randle effect.	Page 48
Figure (4)	(T2DM) related risk factors in cerebrovascular disease.	Page 69
Figure (5)	Mean age in patients of both groups.	Page 90
Figure (6)	Gender distribution of patients of both groups.	Page 90
Figure (7)	Smoking status distribution between both groups.	Page 91
Figure (8)	Distribution of dyslipidemia between both groups.	Page 92
Figure (9)	Distribution of lipid lowering agent intake between both groups.	Page 92

	1	
Figure (10)	HTN distribution	Page 94
	among patients of	
	the 2 groups.	
Figure (11)	LVH distribution	Page 94
	among patients of	
	both groups.	
Figure (12)	Distribution of	Page 95
	ISHD & MI	
	among the	
	2 groups.	
Figure (13)	LAD (mm) of	Page 95
	both groups	_
	patients.	
Figure (14)	Comparison	Page 96
	between both	
	groups as regard	
	(EF).	
Figure (15)	Comparison	Page 96
	between both	
	groups as regard	
	hyperuricemia.	
Figure (16)	Distribution of	Page 97
	TIAs between	
	patients of the 2	
	groups.	
Figure (17)	Distribution of	Page 98
	patients	
	receiving	
	antiplatelet	
	medication prior	
	to stroke among	
	the 2 groups.	

E' (10)		D00
Figure (18)	Comparison	Page 99
	between both	
	groups	
	regarding	
	admission NIHSS	
	score.	
Figure (19)	Comparison	Page 100
	between both	
	groups as regard	
	stroke location.	
T1 (20)		Page 101
Figure (20)	Relation between	1 480 101
	metabolic	
	syndrome with or	
	without T2DM	
	and the grades	
	of leukoaraiosis.	
Figure (21)	Grades of	Page 102
	leukoaraiosis.	_
Figure (22)	Stroke subtypes	Page 104
	in both groups.	8
Figure (23)	Relation between	Page 106
	the 2 groups as	
	regard the (ICS)	
	and the relation	
	between (ICS)	
	and extracranial	
	carotid stenosis in	
	each group.	

Figure (24)	The distribution	Page 107
	of the degree of	
	(ICS) in both	
	groups.	
Figure (25)	The sites of the	Page 109
	intracranial	
	arterial lesion in	
	the 2 groups.	
Figure (26)	The relation	Page 110
	between the	
	obstructive and	
	the non-	
	obstructive	
	intracranial	
	arterial lesions in	
	both groups.	
Figure (27)	The relation	Page 111
	between single	
	and multiple	
	(ICS) in both	
	groups.	

List of Tables

Table (1)	ATD III (21::1	Dogs 11
Table (1)	ATP III Clinical	Page 11
	Identification of the	
	Metabolic	
	Syndrome.	
Table (2)	WHO Clinical	Page 12
	Criteria for	
	Metabolic	
	Syndrome.	
Table (3)	AACE Clinical	Page 13
	Criteria for	
	Diagnosis of the	
	Insulin Resistance	
	Syndrome.	
Table (4)	Demographic and	Page 87
	baseline	C
	characteristics of	
	the study	
	population.	
Table (5)	Comparison	Page 88
	between both	8
	groups regarding	
	risk factor profiles.	
Table (6)	Comparison	Page 98
	between both	
	groups regarding	
	admission NIHSS	
	score.	
	Comparison	Page 99
Table (7)	between both	I age //
	groups as regard stroke location.	
	SHOKE IOCAHOII.	

Table (8)	Comparison of	Page 101
Table (0)	both groups	1 age 101
	regarding the	
	leukoaraiosis.	
Table (0)		Da 102
Table (9)	Comparison	Page 103
	between the 2	
	groups regarding	
	stroke subtype.	
Table (10)	The difference of	Page 105
	(ICS) between the	
	2 groups with	
	comparison	
	between the (ICS)	
	and the extracranial	
	carotid stenosis in	
	each group.	
Table (11)	The distribution of	Page 107
	the degree of	· ·
	intracranial	
	stenosis among	
	patients of the 2	
	groups.	
Table (12)	The distribution	Page 108
1 abic (12)	of sites of the	1 agc 100
	intracranial arterial	
	lesion in the 2	
Table (12)	groups. Difference between	Dogg 110
Table (13)	the 2 groups as regard	Page 110
	obstructive and	
	nonobstructive	
	intracranial arterial	
	lesions.	
Table (14)	The difference	Page 111
, ,	between the 2 groups	G
	as regard single and	
	multiple (ICS).	

syndrome combination Metabolic is of a disorders that, when occurring together, increase the risk of cardiovascular diseases including developing strokes. It affects one in five people in the United States increases with age. Metabolic syndrome is also prevalence known as metabolic syndrome X, cardiometabolic syndrome, syndrome X, insulin resistance syndrome, Reaven's syndrome (CHAOS) that stands for coronary artery disease, hypertension, atherosclerosis, obesity and stroke (Renaldiet al, 2009).

The pathophysiology of metabolic syndrome is extremely complex and has been only partially explained. Development of visceral fat, increased plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL6) and altered levels of a number of other substances (e.g., adiponectin, resistin) play a pivotal role. It is not contested that cardiovascular risk factors tend to cluster together, but what is contested is the assertion that the metabolic syndrome is anything more than the sum of its constituent parts (Narasimhan and Raynor, 2010).

Components of the so called (metabolic syndrome) were frequently found in stroke patients and patients with