

ELECTROCOAGULATION TECHNIQUE IN SURFACE WATER TREATMENT USING ALUMINUM AND IRON ELECTRODES

By

Saad Abdelhalim Bakry Abdelsalam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Civil Engineering – Public Works

ELECTROCOAGULATION TECHNIQUE IN SURFACE WATER TREATMENT USING ALUMINUM AND IRON ELECTRODES

By Saad Abdelhalim Bakry Abdelsalam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Civil Engineering – Public Works

Under the Supervision of

Prof. Dr. Khaled Zaher Abdalla

Dr. Minerva Edward Matta

Associate Professor of Sanitary & Environmental Engineering Faculty of Engineering Cairo University

Assistant Professor of Sanitary & Environmental Engineering Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

ELECTROCOAGULATION TECHNIQUE IN SURFACE WATER TREATMENT BY USING ALUMINUM AND IRON ELECTRODES

By Saad Abdelhalim Bakry Abdelsalam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Civil Engineering - Public Works

Approved by the Examining Committee			
Prof. Dr. Khaled Zaher Abdalla	(Thesi	s Main Advisor)	
Prof. Dr. Mona Mohammed Galal	El-Din	(Internal Examin	er)
Prof. Dr. Maha Mostafa Elshafaie (Housing and Building Nation		ternal Examiner)	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer: Saad Abdelhalim Bakry Abdelsalam

Date of Birth: 17 / 02 / 1990 **Nationality:** Egyptian

E-mail: Sab02@fayoum.edu.eg

Phone: 01115075395

Address: Alazizia – Tamiya - Fayoum

Registration Date: 1/3/2014 **Awarding Date:** //2018

Degree: Master of Science

Department: Civil Engineering – Public Works

Supervisors:

Prof. Dr. Khaled Zaher Abdalla Dr. Minerva Edward Matta

Examiners:

Prof. Dr. Khaled Zaher Abdalla (Thesis Main Advisor)
Prof. Dr. Mona Mohammed Galal El-Din (Internal Examiner)
Prof. Dr. Maha Mostafa Elshafaie (External Examiner)
(Housing and Building National Research Center, Egypt)

Title of Thesis:

Electrocoagulation Technique in Surface Water Treatment Using Aluminum and Iron Electrodes.

Key Words:

Electrocoagulation; Surface water; TOC; Aluminum; Iron.

Summary:

In this thesis, treatment of surface water by electrocoagulation technique using aluminum and iron electrodes has been studied. Experiments were carried out by using natural surface water that was collected at the intake of the new Quhafah drinking water treatment plant (Fayoum, Egypt). Surface water was treated at room temperature with a variable applied current density which varied from 3 to 5 mA/cm², at different reaction time (20, 40, and 60 minutes) and with variable initial pH (4, 5.5, and natural water pH). Furthermore, the electrical energy consumption (EEC) for each electrode has been calculated. From the results, it was observed that aluminum had better performance in removal of TOC, TDS and conductivity than iron. Also, it seemed that both materials are almost equally effective in removal of turbidity. Where, in case of aluminum electrodes, the maximum removal efficiency of TOC, turbidity, TDS and conductivity was 73.58%, 99.10%, 83.85% and 83.87% respectively. Whereas, in case of iron electrodes, the maximum removal efficiency of TOC, turbidity, TDS and conductivity was 64.78%, 98.25%, 78.01% and 78.04% respectively. Also, the results showed that the EEC was lower in case of iron electrodes than in case of aluminum electrodes, where the maximum EEC was 33.99 KWh/m³ for iron electrodes and it was 46.80 KWh/m³ for aluminum electrodes.

Acknowledgments

Undoubtedly, the completion of this work would not be possible without the grace of Allah, then the help, support and motivation of many important individuals.

First, I would like to express my sincere gratitude to my supervisors **Prof. Dr. Khaled Z. Abdalla** and **Dr. Minerva E. Matta** and particular thanks to Dr. Minerva for her helpful and guidance over this research.

I am also particularly grateful to **Dr. Mohammed A. Heikal** and **Dr. Mostafa M. Mostafa** for their help, support and inspiring discussions.

To my family and my wife Shaimaa, thank you for your support, encouragements and love.

I am deeply grateful to my mother, for her love and supporting. She has always stood by me and supported me even during the hardest periods. Also, I would like to dedicate this work to the spirit of my father.

Finally, I would like to express my thanks to everyone who participated directly or indirectly in this work.

Table of Contents

ACKN	OW	LEDGMENTS	I
TABLI	E OI	F CONTENTS	II
LIST C)F T	ABLES	IV
LIST C)F F	IGURES	v
NOME	NCI	LATURE	X
		T	
CHAP		a 1: INTRODUCTION	
1.1.	IN	TRODUCTION	1
1.2.	PR	OBLEM STATEMENT	1
1.3.	OB	BJECTIVE OF THESIS	2
CHAP'	ГER	2: LITERATURE REVIEW	3
2.1.	NA	ATURAL ORGANIC MATTER (NOM)	3
2.1	.1.	Introduction	
2.1	.2.	NOM in Drinking Water	
2.2.	Сн	IEMICAL COAGULATION	
2.3.		ECTROCOAGULATION	
2.3		Introduction	
2.3		Principles of Electrocoagulation (EC)	
2.3	.3.	Description of the Technology	
2.3	.4.	Reactions at the Electrodes	
2.3	.5.	Advantages and Disadvantages of Electrocoagulation	8
2.4.	FA	CTORS AFFECTING ELECTROCOAGULATION PROCESS	9
2.4	.1.	Electrodes' Material	9
2.4	.2.	Electrodes Connection Modes	10
2.4	.3.	Current Density	10
2.4	.4.	Initial pH	11
2.4	.5.	Other Factors	11
2.5.	AP	PLICATIONS OF ELECTROCOAGULATION	12
2.6.	EN	IERGY CONSUMPTION AND OPERATING COST	21
2.7.	От	THER METHODS OF NOM REMOVAL FROM WATER	21
2.7	.1.	Coagulation Process	21
2.7	.2.	Oxidation Processes	22
2.7	.3.	Membrane Filtration	23
CHAP	TER	3: EXPERIMENTAL WORK	24
3.1.	In	TRODUCTION	24
3.2.	FE	ED WATER ANALYSIS	24
3.3.	MA	ATERIALS AND SPECIFICATIONS OF THE SYSTEM	26
3.3	.1.	Schematic Diagram of the System	26
3.3	.2.	Electrocoagulation Reactor Setup and Operating Procedures	

3.3.3.	Chemicals used in the Experiments	29
3.4. Exi	PERIMENTAL PHASES	. 31
3.5. SAN	MPLING	. 32
3.6. ANA	ALYTICAL METHODS	. 33
3.6.1.	pH and Temperature	
3.6.2.	Turbidity	
3.6.3.	Total Dissolved Solids (TDS) and Conductivity	
3.6.4.	Total Organic Carbon (TOC)	
3.7. STA	NDARDS AND QUALITY CONTROL	
CHAPTER	4: RESULTS AND DISCUSSION	. 36
4.1. INT	RODUCTION	. 36
4.2. PER	FORMANCE OF ALUMINUM ELECTRODES	. 36
4.2.1.	At current density = 3 mA/cm ²	36
4.2.2.	At current density = 4 mA/cm^2	
4.2.3.	At current density = 5 mA/cm^2	45
4.2.4.	Discussion of the Aluminum Electrodes Results	
4.2.4.1.	Effect of Current Density	50
4.2.4.2.	1	
4.2.4.3.	=======================================	
4.2.4.4. 4.2.4.5.		
	FORMANCE OF IRON ELECTRODES.	
4.3.1.	At current density = 3 mA/cm^2 .	
4.3.1.	At current density = 4 mA/cm^2	
4.3.2.	At current density = 5 mA/cm^2	
4.3.3. 4.3.4.	Discussion of the Iron Electrodes Results	
4.3.4. 4.3.4.1.		
4.3.4.2.	•	
4.3.4.3.	•	
4.3.4.4.	Change in pH and Temperature	66
4.3.4.5.	Electric Energy Consumption	66
4.4. Con	MPARISON BETWEEN PERFORMANCE OF ALUMINUM AND IRON ELECTRODE	ES
		67
4.5. ELE	CTRODES' SCANNING USING SCANNING ELECTRON MICROSCOPE (SEM) .	
4.5.1.	Aluminum electrodes	76
4.5.2.	Iron electrodes	78
4.6. Con	MPARISON WITH OTHER PAPERS AND RESEARCHES RESULTS	. 79
CHAPTER	5: CONCLUSIONS AND RECOMMENDATIONS	. 80
5.1. Con	NCLUSIONS	. 80
	COMMENDATIONS FOR FUTURE RESEARCH	
DEEEDENI		93

List of Tables

Table 2 - 1 : Applications of EC in the treatment of surface water and other natural	
water	. 12
Table 2 - 2: Applications of EC in the treatment of water containing heavy metals and	d
other elements and ions	. 14
Table 2 - 3: Applications of EC in the treatment of wastewater	. 16
Table 2 - 4: DOC removal efficiency and corresponding optimum conditions	. 22
Table 3- 1 : Feed water Characteristics.	. 25
Table 3- 2: Experimental Work Program.	. 31

List of Figures

Fig. 2- 1: Illustration of electric double layer	4
Fig. 2- 2: Representation of DLVO theory	5
Fig. 2 -3: Principles of EC.	6
Fig. 2- 4: Reactions occurring within an electrocoagulation reactor.	
Fig. 2-5: Schematic diagram of (A) monopolar and (B) bipolar electrode connection	on
modes.	10
Fig. 3 -1: Feed water source location (Google Earth photo)	24
Fig. 3 -2 : Feed water collection	
Fig. 3- 3: Schematic Diagram of the System	26
Fig. 3- 4: Photo of the System	
Fig. 3- 5: Aluminum and Iron Electrodes	
Fig. 3- 6: EA-3048 Power Source.	
Fig. 3- 7: Sedimentation and Filtration Processes	
Fig. 3- 8: pH Adjustment	
Fig. 3- 9: Washing of Electrodes	
Fig. 3- 10: Samples Collection	
Fig. 3- 11: Multimeter 971A	
Fig. 3- 12: inoLab pH 720	
Fig. 3- 13: 2100N Laboratory Turbidimeter	
Fig. 3- 14: inoLab cond 720	
Fig. 3- 15: phoenix 8000 UV-persulfate TOC Analyzer	
Fig. 4- 1: TOC concentration as a function of initial pH and electrocoagulation time	
(Current density = 3 mA/cm^2 , Al electrodes)	
Fig. 4- 2: TOC removal as a function of initial pH and electrocoagulation time (Cur	
density = 3 mA/cm ² , Al electrodes)	
Fig. 4- 3: TDS concentration as a function of initial pH and electrocoagulation time $(C_{\text{turner}}, d_{\text{electrodes}})$	
(Current density = 3 mA/cm ² , Al electrodes)	
Fig. 4- 4: TDS removal as a function of initial pH and electrocoagulation time (Curdensity = 3 mA/cm ² , Al electrodes)	
Fig. 4- 5: Conductivity values as a function of initial pH and electrocoagulation time	
(Current density = 3 mA/cm ² , Al electrodes)	
Fig. 4- 6: Conductivity removal as a function of initial pH and electrocoagulation ti	
• •	38
Fig. 4- 7: Turbidity values as a function of initial pH and electrocoagulation time	50
(Current density = 3 mA/cm^2 , Al electrodes)	39
Fig. 4- 8: Turbidity removal as a function of initial pH and electrocoagulation time	37
(Current density = 3 mA/cm^2 , Al electrodes)	39
Fig. 4- 9: Final pH values as a function of initial pH and electrocoagulation time	57
(Current density = 3 mA/cm^2 , Al electrodes)	40
Fig. 4- 10: Temperature values as a function of initial pH and electrocoagulation tire	
(Current density = 3 mA/cm^2 , Al electrodes)	40
Fig. 4- 11: Electrical energy consumption as a function of initial pH and	
electrocoagulation time (Current density = 3 mA/cm ² , Al electrodes)	40
Fig. 4- 12: TOC concentration as a function of initial pH and electrocoagulation tin	
(Current density = 4 mA/cm ² , Al electrodes)	
Fig. 4- 13: TOC removal as a function of initial pH and electrocoagulation time	
(Current density = 4 mA/cm ² , Al electrodes)	41