ASSESSMENT OF THE MYOSTATIN AND VITAMIN D₃ RECEPTOR GENE EXPRESSION IN RELATION TO MUSCLE STATE

Thesis

Submitted for the partial fulfillment of MSc. Degree in Medical Biochemistry & Molecular biology

By

Ghada Mohamed Gamal El-din Ishak Ismail

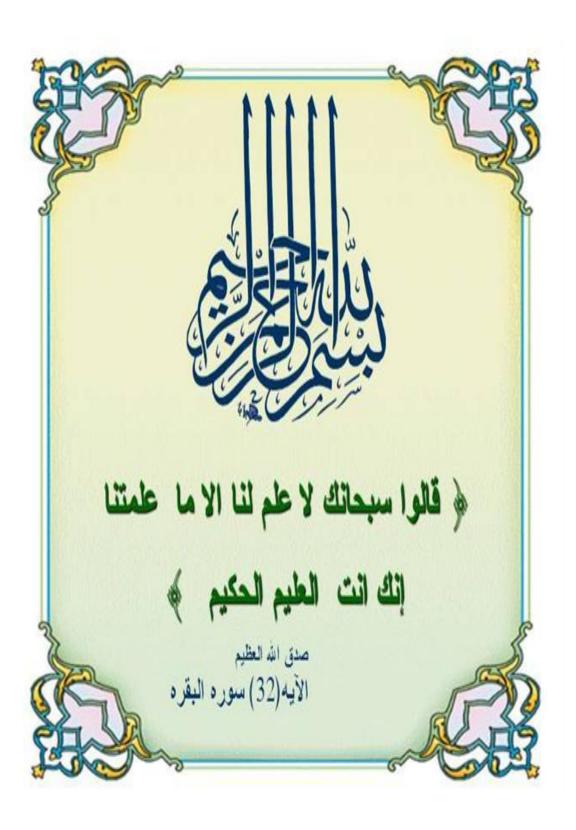
M.B., B.CH.

Faculty of medicine, Ain Shams University

Under supervision of

Prof. Dr. Fawzia Khalil

Professor of Medical Biochemistry & Molecular Biology Faculty of Medicine, Ain Shams University


Prof. Dr. Randa Ali-Labib

Professor of Medical Biochemistry & Molecular Biology Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Amal Mansour

Assistant Professor of Medical Biochemistry & Molecular Biology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2015

ACKNOWLDGMENT

First, and foremost, I feel always indebted to **Allah**, the most kind and the most merciful.

Thanks to **Allah** who lightened my path to become a humble student for a noble profession and granted me the ability to accomplish this work and support me in all my life.

I would like to express my deepest gratitude to **Prof. Dr. Fawzia Khalil Ibrahim**, Professor of Medical Biochemistry & Molecular biology, Faculty of Medicine, Ain Shams University, for her great support and encouragement throughout the whole work. It is a great honor to work under her guidance and supervision.

My deepest appreciation and gratitude to **Prof. Dr. Randa Ali-Labib**, Professor of Medical Biochemistry & Molecular biology, Faculty of Medicine, Ain Shams University, for her great support, encouragement and kind care throughout the whole work.

My deepest appreciation to **Assistant Prof. Dr. Amal Mansour**, Assistant Professor of Medical Biochemistry & Molecular biology, Faculty of Medicine, Ain Shams University, for her kind help and support in practical work.

My deepest grateful to **Prof. Dr. Sarah Ahmed Hamza**, Professor of Geriatric & Gerontology Faculty of Medicine, Ain Shams University, for her kind help and support in collecting samples.

I would like to express my best regards and thanks to **All Professors and Colleagues** at Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, for their generous help and sincere advice.

Words can never express my sincere thanks to My Family for their continuous encouragement, generous support and love.

Ghada Mohamed Gamal El-Din Ishak

DEDICATION

To My Dear Parents who support and

help me throughout my whole life

To My Dear Brother

Ghada Mohamed Gamal el-din

LIST of CONTENTS

	CONTENTS	page
·	LIST of CONTENTS	I
	 LIST of ABBREVIATIONS 	II
	LIST of FIGURES	VI
	LIST of TABLES	VII
	INTRODUCTION	1
	• AIM of THE WORK	4
•	REVIEW of LITERATURE	
e: 	• SARCOPENIA	5
	• MYOSTATIN	23
	• VITAMIN D	34
	• SUBJECTS AND METHODS	45
•	• RESULTS	75
<i>!</i>	• DISCUSSION	92
-	• CONCLUSION	104
**	• RECOMMENDATIONS	106
ı	• SUMMARY	107
ľ	• REFERANCES	112
ı	• ARABIC SUMMARY	

Abbreviation	Meaning
1,25(OH) ₂ -D ₃	1,25-Dihydroxyvitamin D _{3.}
24, 25 (OH) ₂ D ₃	24, 25 Dihydroxyvitamin D ₃ .
ACE	Angiotensin-Converting Enzyme.
ActRIIB	Activin Type IIB Receptor.
ADL	Activities of Daily Living.
Akt	Alpha Serine/Threonine-Protein Kinase.
ALK4	Activin-Like Kinase 4.
ALK5	Activin-Like Kinase 5.
AMP	Adenosine Monophosphate.
ATP	Adenosine Triphosphate.
BIA	Bio-Impedance Analysis.
BMI	Body Mass Index.
BMP	Bone Morphogenetic Protein.
bp	Base Pair.
c-Src	Cellular Src.
СТ	Computed Tomography.
CVS	Cardio-Vascular System.
CYP2D11	Cytochrome P450 2D11.
CYP2D25	Cytochrome P450 2D25.
CYP2R1	Cytochrome P450 2R1.
DBP	Vitamin D Binding Protein.
DXA	Dual Energy X-Ray Absorptiometry.

Abbreviation	Meaning
EDTA	Ethylene-Diamine-Tetra-Acetic Acid.
EWGSOP	The European Working Group On Sarcopenia In Older People.
FLRG	Follistatin Related Gene.
Fst gene	Follistatin Gene.
GASP-1	Growth And Differentiation Factor- Associated Serum Protein 1.
GDF8	Growth And Differentiation Factor 8.
GH	Growth Hormone.
Id	Inhibitor of Differentiation.
IGF-1	Insulin Like Growth Factor-I.
IL-6	Interleukin- 6.
IU	International Unit.
LTBP3	Latent TGF-B Binding Protein 3.
M	Molar.
m	Meter
MAC	Mid-Arm Circumference.
MAMC	Mid-Arm Muscle Circumference.
MgCl2	Magnesium Chloride.
miR-27	Micro RNA-27.
ml	Milliliter.
MRI	Magnetic Resonance Imaging.
mRNA	Messenger RNA.
MSTN gene	Myostatin Gene.

Abbreviation	Meaning
mTOR	Mammalian Target of Rapamycin.
PBK	Partial Body Potassium.
PBS	Phosphate Buffer Saline.
PCR	Polymerase Chain Reaction.
pmol	Pico-Mole.
PRT	Progressive Resistance Training.
RAAS	Renin-Angiotensin-Aldosterone System.
RNA	Ribonucleic Acid.
ROC	Receiver Operating Characteristics.
RT-PCR	Reverse Transcription PCR.
RXR	9-Cis-Retinoic Acid Receptor.
siRNA	Small Interfering RNA.
SM	Skeletal Muscle.
T2DM	Type 2 Diabetes Mellitus.
Ta	Annealing Temperature.
Taq	Thermus Aquaticus.
TBK	Total Body Potassium.
Tm	Melting Temperature.
TNFα	Tumor Necrosis Factor-α.
TNFβ	Tumor Necrosis Factor-β.
TUGT	Timed Get Up & Go Test.
UVB	Ultra-Violet B.
! !	

Abbreviation	Meaning	
VDR	Vitamin D Receptor.	. swa s swa s swa s swa s .
VDREs	Vitamin D Response Elements.	
VitD	Vitamin D.	**************************************
μg	Micro-Gram.	
μl	Micro Liter.	-

List of Figures

<u>No.</u>	<u>Figure</u>	Page	
1	Effect of MSTN on the Upper Limb Muscles of	23	
	Wild Type Mouse	25	
2	Negative Regulation of Muscle Growth by	25	
	MSTN		
3	MSTN Signaling in the Skeletal Muscle	28	
4	Vitamin D Metabolism	38	
5	Genomic Signaling Pathway of Vitamin D	41	
6	Height Measurement	48	
7	Lange Caliber	51	
8	Hand Grip Dynamometer	52	
9	Illustration of Band Quantitation by Quantity	71	
	One Computer Program Version 4.6.3		
10	The Positivity Rate of Physical activity among	82	
	The Different Studied Groups	04	
11	The Positivity Rate of Diabetes mellitus among	nong	
	The Different Studied Groups	82	
12a	RT-PCR analysis for MSTN product	84	
12b	RT-PCR analysis for VDR product	84	
13	ROC Curve Analysis for MSTN	85	
14	ROC Curve Analysis for Vitamin D Receptor	86	
15	The Positivity Rate of MSTN Gene Expression	87	
	among the Different Studied Groups		
16	The Positivity Rate of Vitamin D Receptor		
	Gene Expression among the Different Studied	88	
	Groups	/ MIT /	

List of Tables

No.	Table	Page
1	Criteria for the Diagnosis of Sarcopenia	45
2	EWGSOP Conceptual Stages of Sarcopenia	46
3	The Age Association in the Different Studied Groups	79
4	The Relation of BMI and Muscle Parametric Measurements to the Different Studied Groups	80
5	Positivity Rate of the Different Clinical Factors among Studied Groups	81
6	The Relation of the Relative Quantity of MSTN and VDR to the Different Studied Groups	83
7	The Positivity Rate of Myostatin Gene Expression among the Different Studied Groups	87
8	The Positivity Rate of Vitamin D Receptor Gene expression among The Different Studied Groups.	88
9	The Correlation of the Relative Quantity of MSTN & VDR to the BMI and Muscle Parametric Measurements in the Different Studied Groups.	89
10	The Relation of the Relative Quantity of MSTN and Vitamin D Receptor to the Different Clinical Factors	90
11	The Sensitivity, Specificity, Predictive Values and Accuracy of MSTN And VDR in Sarcopenia	91

INTRODUCTION

A grave change associated with human ageing is progressive decline in skeletal muscle mass, a downward spiral that may lead to decreased strength and functionality. The term sarcopenia (in Greek, sarx for flesh and penia for loss), first proposed by **Rosenberg, 1997** describes the age-related loss of skeletal muscle mass and strength.

Sarcopenia has been defined as the loss of skeletal muscle mass and strength that occurs with advancing age (Morley et al., 2001). However, a widely accepted definition of sarcopenia suitable for use in research and clinical practice is still lacking.

Ali & Garcia, 2014 found that sarcopenia is increasingly being recognized as a geriatric syndrome and a key public health issue. Starting at the age of 30 years, individuals lose 1–2% of muscle per year, and by the age of 80 years, 30% of the muscle mass is lost.

Geriatric syndromes are common, complex and costly states of impaired health in older individuals. Geriatric syndromes result from incompletely understood interactions of disease and age on multiple systems, producing a constellation of signs and symptoms. Delirium, falls and incontinence are examples of geriatric syndromes (Inouye et al., 2007). It was suggested that it may be likewise helpful to recognize sarcopenia as a geriatric syndrome because this view promotes its identification and treatment even when the exact causes remain unknown (Cruz-Jentoft et al., 2010).

The well-recognized functional consequences of sarcopenia include gait and balance problems and increased risk for fall physical inactivity, decreased mobility, slow gait, and poor physical endurance (**Kim & Choi, 2013**)

Ultimately, these impairments can lead to the loss of physical functional independence. However, sarcopenia may also contribute to an increased risk for chronic diseases such as diabetes and osteoporosis (**Dutta**, **1997**).

Emerging evidence has shown that vitamin D administration improves muscle performance and reduces falls in vitamin D-deficient older adults (Bordelon et al., 2009)

On the other hand, Myostatin(growth and differentiation factor 8 [GDF8]) is a transforming growth factor- superfamily member with importance as a negative growth regulator for skeletal muscle (**Roth**, 2003).

Mutations in the myostatin gene result in a hypermuscular phenotype in mice (Mc pherron& Lee, 1997).

However, little is known of the underlying mechanism or the role 1,25(OH)2-D3 plays in promoting myogenic differentiation at the cellular and/or molecular level and its relation to myostatin gene expression. **Garcia et al., 2011** declared that addition of vitamin D3 to muscle cell culture decrease expression of myostatin.

The prevalence of falls in older community-dwelling elderly individuals is approximately 30% and such estimate increases to 40% among the "oldest-old" (Landi et al, 2012a)

Bahat et al (2010) found that the prevalence of sarcopenia differs between different populations, ages, gender and between settings such as the community and nursing homes Masanes et al., (2012) found the prevalence of sarcopenia was 33% in elderly women and 10% for males in healthy community-dwelling elderly in an urban area of Barcelona (Spain). Tichet et al., (2008) found the prevalence of sarcopenia was 23.6% in women and 12.5% in men in community-dwelling elderly in France. In Taiwan Chien et al., (2008) estimated the prevalence of sarcopenia to be 18.6% and 23.6% in elderly community dwelling women and men respectively.