Mechanical Versus Tissue Valves Replacement in cases of Rheumatic Mitral Valve Disease

Thesis

Submitted for partial fullfilment of M.D. Degree in Cardiothoracic Surgery

By

Mohamed Ahmed Shawky Mohamed Zahran

Assistant Lecturer of Cardiothoracic Surgery-Faculty of Medicine Minia University

Supervisors

Professor Doctor/Mohsen Mohamed Abd El-Karem Fadala

Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Professor Doctor/Ahmed Abd El-Aziz Ibrahim

Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Doctor/Hossam El-Dein Ashour Abd El-Hameed

Assitant Professor of Cardiothoracic Surgery Faculty of Medicine – AinShams University

Doctor/Shady Eid Moussa Elwany

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine-Minia University

Doctor/Sherif Abd EI-Samie Ahmed Mansour

Lecturer of Cardiothoracic Surgery Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain-Shams University

مقارنة استبدال الصمام الميترالي بصمام ميكانيكي مقابل الصمام النسيجي في حالات إصابة الصمام الميترالي بالحمي الروماتيزمية

توطئة للحصول على درجة الدكتوراه في جراحة القلب و الصدر رسالة مقدمة من

طبيب/محمد أحمد شوقى محمد زهران

مدرس مساعد جراحة القلب و الصدر- كلية الطب - جامعة المنيا

تحت إشراف

الأستاذ الدكتور/محسن محمد عبد الكريم فضاله

أستاذ جراحة القلب و الصدر - كلية الطب-جامعة عين شمس

الأستاذ الدكتور/أحمد عبد العزيز إبراهيم

أستاذ جراحة القلب و الصدر - كلية الطب-جامعة عين شمس

دكتور/حسام الدين عاشور عبد الحميد

أستاذ م. جراحة القلب و الصدر - كلية الطب-جامعة عين شمس

دكتور/شادي عيد موسى علواني

أستاذ مساعد جراحة القلب و الصدر - كلية الطب-جامعة المنيا

دكتور/شريف عبد السميع أحمد منصور

مدرس جراحة القلب و الصدر - كلية الطب-جامعة عين شمس

كلية الطبجامعة عين شمس

Contents

Title	
Introduction	
Aim of the work	
Review of literature	
Patients and methods	
Results	
Discussion	
Summary	
Conclusion	
References	
Arabic Summary	

List of Abbreviations

2D echo	Two-dimensional echocardiography
ACE	Angiotensin converting enzyme
AF	Atrial fibrillation
ASD	Atrial septal defect
BMW	Ballon mitral valvotomy
CAD	Coronary artery disease
COP	Cardiac output
COPD	Chronic obstructive pulmonary disease
CVP	Central venous pressure
ECG	Electrocardiogram
Echo	Echocardiography
EOA	Effective orifice area
ERA	Effective regurgitant area
ESRD	External sewing ring diameter
FTR	Functional tricuspid regurgitation
GOA	Geometric Orifice area
HF	Heart failure
HT	Hypertension
INR	International normalized ratio

IOD	Internal orifice diameter
LA	Left atrium
LV	Left ventricle
LVEDD	Left ventricular end diastolic diameter
LVEDP	Left ventricular end diastolic pressure
LVEF	Left ventricular ejection fraction
LVESD	Left ventricular end systolic diameter
LVOT	Left ventricular outflow tract
MR	Mitral regurgitation
MS	Mitral stenosis
MV	Mitral valve
MVA	Mitral valve area
MVR	Mitral valve replacement
NYHA	New York Heart Association
OS	Opening snap
PASP	Pulmonary artery systolic pressure
PMC	Percutaneous mitral commissurotomy
PVL	Paravalvular leak
RF	Rheumatic fever
RV	Right ventricle

RHD	Rheumatic heart disease
Rvol	Regurgitant volume
S1	First heart sound
S2	Second heart sound
SV	Stroke volume
SVD	Structural valve deterioration
TAD	Tissue annulus diameter
TEE	Transoseophageal echocardiography

list of Figures

Figure 1	Non-planner model of the mitral valve annulus showing saddle-
	shaped three-dimensional geometry.
Figure 2	Carpentier's classification of mitral valve anatomy
Figure 3	Duran's classification of mitral valve anatomy.
Figure 4	Anterior leaflet: Rough zone and clear zone
Figure 5	Posterior leaflet: Clear zone, rough zone and basasl zone
	(rough:clear=1:4).
Figure 6	Illustration shows the chordae tendinae while connecting the mitral
	valve leaflet to the papillary muscles
Figure 7	Chest radiograph of a patient with severe mitral stenosis showing
	left atrial enlargement and pulmonary congestion
Figure 8	Apical 4-chamber echocardiographic view of a patient with severe
	mitral stenosis showing severe left atrial (LA) enlargement and a
	calcified mitral valve with reduced excursion
Figure 9	Parasternal long-axis view of patient with acute rheumatic fever
	and severe mitral regurgitation showing prolapse of anterior mitral
	leaflet
Figure 10	Management of severe mitral stenosis
Figure 11	Management strategy for patients with chronic severe mitral
	regurgitation
Figure 12	Valve diameters. IOD internal orifice diameter, TAD tissue
	annulus diameter, ESRD external sewing ring diameter
Figure 13	Geometric Orifice Area (GOA) and Effective Orifice Area (EOA)
	of a mechanical bileaflet valve.
Figure 14	Starr-Edwards Silastic ball valve mitral Model 6120

Figure 15	Non-tilting disc valves:
	a) Beall
	b) Starr-Edwards
Figure 16	St. Jude bileaflet mechanical mitral valve
Figure 17	Epic St. Jude mitral bioprosthesis
Figure 18	Pathogenesis of functional tricuspid regurgitation
Figure 19	Stages of the progression of functional tricuspid regurgitation
Figure 20	Illustration shows conventional longitudinal left atriotomy
Figure 21	Illustration shows suture DeVega's tricuspid annuloplasy.

List of Tables

Table 1	Classification of the severity of Mitral stenosis
Table 2	Comparison of findings in severe acute MR & chronic MR
Table 3	Severity of MR according to the Doppler echocardiography
Table 4	Angiographic grading of regurgitant severity of mitral valve
Table 5	Mechanical Therapy for MS
Table 6	Determinants of the Echocardiographic Mitral Valve Score
Table 7	Indications for Percutaneous BMV
Table 8	Indications for Surgery for Mitral Stenosis
Table 9	Indications for Mitral Valve Operation
Table 10	Table showing no. and sizes of different types of mechanical valves
	used in the study in Group A
Table 11	Table showing no. of different sizes of tissue valves used in group B
	(Exclusive Epic St. Jude mitral tissue valves)
Table 10	Demographic characteristics of patients in the studied groups
Table 11	Preoperative systematic diseases and risk factors in the studied
	groups
Table 12	Types of mitral valve disease in the studied groups
Table 13	Preoperative echocardiographic assessment in the studied groups
Table 14	Operative time in the studied groups
Table 15	Additional intra-operative interventions in the studied groups
Table 16	Postoperative complications in the studied groups
Table 17	Postoperative New York Heart Association (NYHA) functional
	classification in the studied groups
Table 18	Early postoperative echocardiographic assessment in the studied
	groups

Table 19	Postoperative durations of mechanical ventilation, ICU stay and
	hospital stay in the studied groups
Table 20	Follow-up 3 months echocardiographic assessment in the studied groups
Table 21	Follow-up 6 months echocardiographic assessment in the studied groups
Table 22	Follow-up 12 months echocardiographic assessment in the studied groups

ACKNOWLEDGEMENTS

In the name of ALLAH The Merciful The Compassionate

To the **Almighty Merciful Allah** whose celestial assistance has offered me the golden chance to be instructed by such most respectable scientists and most honourable professors. To him of most humbly I offer my thanks.

To **Prof. Mohsen Abd El-Karem Fadala, Professor of cardiothoracic surgery, Ain Shams University,** I give tribute of what can words convey of gratitude together with love and admiration, for without his enthusiastic help, care and encouragement, this work would not have come to light. Let me admit, that through his remarks, guidance and moralism, I have been able to get valuable experience, information and to avoid glaring errors.

To **Prof.Ahmed Abd ElAziz Ibrahem, Professor of cardiothoracic surgery, Ain Shams University,** who supported, encouraged and directed my efforts through this work. To him, in simple but expressive words, I voice a sincere but humble "thank you".

My great appreciation to **Dr.Hossam Eldin Ashour, Assistant Professor of cardiothoracic surgery, Ain Shams University,** is due to his intellectual guidance, his valuable advices and his peerless efforts throughout the whole work. His generosity, kindness and humanity are unique and everlasting.

My great appreciation to **Dr. Shady Eid Moussa Elwany, Assistant Professor of cardiothoracic surgery, Minia University,** is due to his intellectual guidance, his valuable advices and his peerless efforts throughout the whole work. His generosity, kindness and humanity are unique and everlasting, and to **Dr. Sherif Abd El-Samie Ahmed,Lecturer of cardiothoracic surgery, Ain Shams University**, for his great guidance and support.

My sincere thanks to my colleagues in the departments of Cardiothoracic Surergy, Ain-Shams University and Minia university for their co-opeartion, understanding and constructive remarks.

Last but not least my thanks to the participants in this study for without their patience, interest in research this work would not have been done.

Mohamed Zahran 2016

Introduction

Rheumatic fever (RF) is the cause of rheumatic heart disease (RHD) in developing countries. It is estimated that 15.6 million people suffer from RHD worldwide, with nearly 233,000 related deaths each year (*Carapetis J. et al.*, 2005).

Mitral valve is the most commonly affected cardiac valve. Mitral valve affection results from an abnormal autoimmune response to group A streptococcal infection in a genetically susceptible host (*Marijon E. et al.*, 2012).

In rheumatic mitral valve disease, the valve is exposed to one or both of two conditions (mitral Stenosis or mitral regurgitation). Patients with Mitral stenosis typically present more than 20 years after an episode of rheumatic fever. Single or recurrent bouts of rheumatic carditis cause progressive thickening, scarring, and calcification of the mitral leaflets and chordae.

Fusion of the commissures decreases the size of the mitral opening. This obstruction results in the development of a pressure gradient across the valve in diastole and causes an elevation in left atrial and pulmonary venous pressures. Elevated left atrial pressure leads to left atrial enlargement, predisposing the patient to atrial fibrillation and arterial thromboembolism. Elevated pulmonary venous pressure results in pulmonary congestion and pulmonary edema. In advanced mitral stenosis, patients develop pulmonary hypertension and right-sided heart failure (*Ronan et al.*, 2010).

Rheumatic mitral regurgitation results from two possible etiologies. One is the acute rheumatic process resulting in annular dilation from myocarditis. This occurs from the actual rheumatic infection. However, the most common cause is from the chronic sequelae of rheumatic fever resulting in severe valve thickening, especially involving the posterior leaflet, as well as rolling of the leaflet edges. The chordae may be elongated but more typically are shortened, thickened and fused, and sometimes they are so short that the papillary muscles actually appear to be fused up to the valve leaflet (*James* I. et al., 2008).

Rheumatic process is the first most common cause of mitral stenosis and the second most common of mitral regurgitation. If a patient has combined mitral stenosis and mitral regurgitation, the cause is nearly always rheumatic (*Fritz J.*, 2003).

If the condition is not prevented, nor properly medically treated (with antibiotics), progressive damage to the mitral valve can occur. Since rheumatic heart disease is usually progressive, the cardiac valve problems tend to worsen over time and valve replacement surgery is likely to be required. It should be noted that in developing countries rheumatic heart disease is the predominant indication for cardiac surgery (*Geldenhuys A.*, *et al.2012*).

When describing rheumatic affection of mitral valve leaflets, 5 points are to be assessed: the **commissural fusion**, **leaflet thickening**, **leaflet calcification**, **leaflet fibrosis** and **chordal shortening**. Dysfunction of any one or more components of this valvular-ventricular complex can lead to mitral regurgitation or mitral stenosis (*James I.* et al., 2008).

There are 2 main types of valves implanted in cases of mitral valve disease (mechanical prosthetic and tissue valves) (*Tomas G., et al. 2008*).

In general, mechanical valve is preferred than tissue due to freedom from valve reoperation but not from valve-related morbidities. A mechanical valve should be expected to last the lifetime of the patient. Tissue valves are made from porcine valve or bovine pericardial tissue. They deteriorate with time, either becoming calcified or stenotic (*Jamieson W. et al.*, 2005).

The main **advantage** of the mechanical valve is that it is permanent. The main **disadvantage** is that it requires anticoagulation (which is hazardous in young female patients during pregnancy) for the rest of a patient's life. Even with adequate anticoagulation, there remains a chance of thrombosis (*Tomas G., et al. 2008*).