العلاقة بين معامل كتلة الجسم و هشاشة العظام الأوليه في كبار السن المصريين

رسالة توطئة للحصول على درجة الماجستير في طب وصحة المسنين

مقدمة من الطبيبة/ عبير حسن محمد حسن

تحت اشراف

الأستاذ الدكتور/ أحمد كامل مرتجي

أستاذ طب وصحة المسنين كلية الطب- جامعة عين شمس

الدكتور/ ساره أحمد حمزه

أستاذ مساعد طب وصحة المسنين كلية الطب- جامعة عين شمس

الدكتور/ محمد زين عبد الودود

مدرس طب وصحة المسنين كلية الطب -جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١١

Relationship Between Body Mass Index and Primary Osteoporosis in Elderly Egyptian.

Thesis

Submitted for partial fulfillment of Master degree in Geriatric Medicine

By

Abeer Hassan Mohammed M.B.B.CH

Supervised By

Prof. Dr. Ahmed Kamel Mortagy

Professor of Geriatric Medicine Faculty of Medicine Ain Shams University

Dr. Sarah Ahmed Hamza

Assisstant professor of Geriatric Medicine Faculty of Medicine Ain Shams University

Dr. Mohammed Zein Abdelwadoud

Lecturer of Geriatric Medicine Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2011

List of Contents

Title	Page
List of Tables	••••
List of Abbreviation	••••
Introduction	1
Aim of the Work	3
Review of Literature:	
> Osteoporosis	4
Relation between Body Mass Index and Primar Osteoporosis	-
Subjects and Methods	45
Results	50
Discussion	64
Summary	75
Conclusion	78
Recommendations	79
References	80
Appendix	100
Arabic Summary	

List of Figures

Fig. No	Title	Page
Figure (1):	Comparison between dominant and non dominant hands as regards handgrip	_
	0 0 1	F-0
	strength among males	53

List of Tables

Table. No	Title	Page	j
Table (1):	Comparison between cases and controls as regard Age	5	50
Table (2):	Comparison between cases and controls as regard sex	5	50
Table (3):	Correlation between age and BMD among al Participants		51
Table (4):	Comparison between cases and controls as regard occupation	5	51
Table (5):	Correlation between age and BMI among all participants	5	52
Table (6):	Comparison between cases and controls as regard Anthropometric measures	5	52
Table (7):	Correlations between anthropometric measures and BMD among Study cases	5	53
Table (8):	Correlations between anthropometric measures and BMD among study controls	5	54
Table (9):	Correlations between anthropometric measures and BMD Among all participant	s 5	55
Table (10)	: Comparison between categories of BMI as regard BMD Among case group	5	6
	: Comparison between categories of BMI as regard BMD among control group	5	57
Table (12)	: Comparison between categories of BMI as regard BMD among all participants	5	58
Table (13)	: Comparison between male cases and controls as regard BMI	5	58

List of Tables (Cont.)

Table. No	Title	Page	
Table (14):	Comparison between female cases and controls as regard BMI	59	9
Table (15):	Comparison between cases and controls as regard functional status (ADL and IADL)		9
Table (16):	Comparison between Not impaired ADL cases and controls as regard BMI	60	Э
Table (17):	Comparison between patients according to their IADL as regard BMD		Э
Table (18):	Comparison between Not impaired IADL cases and controls as regard BMI	61	1
Table (19):	Comparison between impaired IADL cases and controls as regard BMI	61	1
Table (20):	Correlation between laboratory measurements and BMD	62	2

List of Abbreviations

ACTH	··· Adrenocorticotropic hormone
ADL ·····	···· Activities of daily life
AIDS ······	··· Autoimmune deficiency syndrome
BMD	Bone Mineral Density
BMI	Body Mass Index
BSAP	Bone specific alkaline phosphatase
CA	Calcium
COPD	Chronic Obstructive Pulmonary Disease
CTx	C -telopeptide of collagen cross-links
CVD	Cardiovascular disease
DEXA	Dual Energy X-ray Absorptiometry
DPA	Dual-photon Absorptiometry
Dpd	deoxypyridinolines
DRA	Dual energy Radiographic Absorptiometry
FDA	Food-Drug administration
FRAX	Fracture Risk Assessment Tool
g/cm ²	gram/square centimeter
GnRH	Gonadotropin-releasing hormone
IADL	Instrumental Activity of daily living
ICTP	Cross-linked C -telopentide of type I collage

List of Abbreviations (Cont.)

Kg/m2 · · · · · · ·	··Kilogram/square meter
MRI	. Magnetic Resonance Imaging
NOF	National osteoporosis foundation
NTx	N -telopeptide of collagen cross-links
OC	. Osteocalcin
OPG	Osteoprotegerin
PICP	Carboxyterminal propeptide of type I collager
PINP	Aminoterminal propeptide of type I collagen
PO4	Phosphorus
PTH	Parathyroid hormone
Pyd	Pyridinolines
QCT	·· Qquantitative computed tomography
QTLs · · · · ·	·· Quantitative trait loci
RANK·····	··Receptor activator of nuclear factor Kappa-E ligand
RANKL	Receptor activator of nuclear factor kappa-Eligand
RI	·· Recombinant inbred
SD	·· Standard Deviation
SERMs	·· Selective estrogen receptor modulators
SPA	·· Single-photon absorptiometry
SPECT ·····	·· Single-photonemission computed tomography
SPSS	·· Statistical Package for Social Sciences
T2DM	·· Type2 diabetes mellitus

List of Abbreviations (Cont.)

T-FN BMD······ T-score of Femur Neck Bone Mineral Density

T-LS BMD ····· T-score of Lumbar Spine Bone Mineral

Density

US..... United States

WHO The world health organization

First and foremost thanks to Allah, who is behind every success.

ı,

I wish to express my deep appreciation and gratitude to **Prof.**Ahmed Kamel Mortagy, Professor of Geriatric Medicine, Faculty of Medicine, Ain Shams University for his great help and continuous encouragement throughout whole research.

I am especially grateful to **Dr. Sarah Ahmed Hamza**, Assisstant professor of Geriatric Medicine, Faculty of Medicine, Ain Shams University for her willing assistance guidance and encouragement during the course of this study.

Iam very much obliged to the kindness and great help of **Dr. Mohamed Zein Abdelwadoud,** Lecturer of Geriatric Medicine, Faculty of Medicine, Ain Shams University For his scientific guidance and valuable assistance in this work.

Iam very much obliged to the kindness and great help of **Dr. Mohamed Aref,** professor of clinical pathology, Faculty of Medicine, Al-Azhar University For his assistance in this work.

Finally I wish express my deepest gratitude and appreciation to my mother, my son, my husband and all my family for patience, moral support to complete this work and encouragement during the whole period of research.

Abeer Hassan

Introduction

Osteoporosis is accelerated bone loss. Normally, there is loss of bone mass with aging, perhaps 0.7% per year in adults. However, bone loss is greater in women past menopause than in men of the same age. The process of bone remodeling from resorption to matrix synthesis to mineralization normally takes about 8 months; a slow but constant process. Bone in older persons is not as efficient as bone in younger persons at maintaining itself. There is decreased activity of osteoblasts and decreased production of growth factors and bone matrix (*Sambrook and Cooper*, 2006).

Osteoporosis is a systemic disease in which bone density is reduced leading to the weakening of the skeleton and increase vulnerability to fractures (*Wells et al.*, 2005).

It is called silent disease since there are few associated symptoms; osteoporotic fracture is chief clinical feature with an enormous burden on the health related quality of life and mortality (*Bagnato et al.*, 2007).

Osteoporosis can be classified as primary or secondary. Primary osteoporosis is simply the form seen in older persons and women past menopause in which bone loss is accelerated over that predicted for age and sex. Secondary osteoporosis results from a variety of identifiable conditions (*Sweet et al.*, 2009).

Several studies discussed the relation between Body Mass Index and osteoporosis, *Nguyen*, *2000* found that body weight or body mass index (BMI) is positively associated with BMD.

Some epidemiological data show that higher body weight or BMI is positively correlated with bone mass, and weight loss may cause bone loss (*Guney et al.*, 2003; *Radak*, 2004 and *Gnudi et al.*, 2007). If so, increasing BMI in postmenopausal women is assumed to protect against osteoporosis (*Reid et al.*, 1992; *Felson et al.*, 1993). Furthermore, weight loss may increase significantly bone resorption markers, suggesting that body weight directly influences osteoclastic activity (*Hyldstrup et al.*, 1993).

Ricci et al. (2001) support this hypothesis, in a cross-sectional study with 100 healthy postmenopausal women; it was observed that BMI is inversely related to serum tartrateresistant acid phosphatase activity.

Still the relation between BMI and Osteoporosis is considered a research question in several studies and also how obesity can affect osteoporosis (*Greco et al.*, 2010).

Aim of the Work

To detect the relationship between body mass index and primary osteoporosis in elderly Egyptian.

Osteoporosis

Introduction to Osteoporosis

Osteoporosis is accelerated bone loss. Normally, there is loss of bone mass with aging, perhaps 0.7% per year in adults. However, bone loss is greater in women past menopause than in men of the same age. The process of bone remodeling from resorption to matrix synthesis to mineralization normally takes about 8 months, a slow but constant process. Bone in older persons just isn't as efficient as bone in younger persons at maintaining itself. There is decreased activity of osteoblasts and decreased production of growth factors and bone matrix (*Sambrook and Cooper*, 2006).

The World Health Organization (WHO) has defined osteoporosis as a spinal or hip bone mineral density (BMD) that is 2.5 standard deviations or more below the mean BMD for healthy, young women, measured by Dual Energy X-ray Absorptionmetry (DEXA). The WHO defines osteopenia as a spinal or hip BMD between 1 and 2.5 standard deviations below the mean for healthy, young women (WHO, 2009).

Osteoporosis affects 10 million women and men in the United States, with direct costs of \$17 billion in 2005 (*Burge et al.*, 2007).

The prevalence of osteoporosis in men over the age of 50 years is 3 times less frequent than in women (*Kanis et al.*, 2008).

Pathophysiology of Osteoporosis

The overall architecture of bone is divided into cancellous bone (also referred to as trabecular bone) and cortical bone; because the surface area of cancellous bone far exceeds that of cortical bone, and is more metabolically active, cancellous bone is more severely affected if bone remodeling becomes uncoupled. During the accelerated period of bone loss immediately after menopause, cancellous bone loss increases 3-fold, while rates of cortical bone loss are slower, because the vertebrae are rich in cancellous bone, vertebral fractures are relatively common in the early postmenopausal years, with hip fractures tending to occur in later years (*American Medical Association*, 1998).

Approximately half of the bone mass is accumulated during pubertal development (*Bonjour et al.*, 1991). This is associated with the increase in sex hormone levels and is almost completed with closure of the end plates. There is only minimal additional accumulation of the bone minerals during the next 5 to 15 years (skeletal consolidation).

Genetic factors have long been recognized as playing an important role in osteoporosis (Zintzaras et al., 2006).

The main factor influencing peak bone mass is genotype. The genes implicated in osteoporosis include those for the estrogen receptor, transforming growth factor- β , and Apolipoprotein E and collagen (*Skugor*, 2010).