Assessment of All-Ceramic Cantilever Bridges with Different Connector Dimensions

Thesis

Submitted to the Faculty of Oral and Dental Medicine, Cairo-University, in partial fulfillment of the requirements for Doctor's Degree in Fixed Prosthodontics

By Sherif Fayez Ahmed Bahgat B.D.S. (2000), M.D.S. (2009) Cairo University

بسم الله الرحمن الرحيم

⁹قال رب اشرح لی صدری، و یسر لی امری، و احلل عقدة من لسانی، یفقهوا قولی،

صدق الله العظيم

سورة طه (اية 24-28)

بسم الله الرحمن الرحيم

⁹قال رب اشرح لی صدری، و یسر لی امری، و احلل عقدة من لسانی، یفقهوا قولی،

صدق الله العظيم

سورة طه (اية 24-28)

Dr. Hesham Katamish

Professor of Fixed Prosthodontics,
Dean of the Faculty of Oral and Dental
Medicine, Cairo University.

Dr. Jylan El-Guindy

Assistant Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University. First of all, I feel thankful to Allah for giving me the guidance and internal support in all my life and in every step that I made until this study was completed.

I would like to express my appreciation to Dr. Hesham Katamish Professor of Fixed Prosthodontics, Dean of the Faculty of Oral and Dental Medicine, Cairo University, for his valuable ideas, stimulating discussions, enlightening guidance, and keen supervision that he has kindly given me throughout the research program, which was instrumental in achieving the completion of this study.

I would like to express my heartful thanks and deep gratitude to Dr. Jylan El-Guindy Assistant Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her unforgettable help, advice, wise guidance, and fruitful assistance during the course of this research.

Also I would like to express my appreciation to Dr. Mohamed Hassanein for his valuable contribution in preparation of the samples.

Last but not least, I would like to thank all my colleges in Fixed Prosthodontics department in MSA University for their valuable support throughout the research program.

I could never be grateful enough to *my wife*, for standing beside me all over the way and for being the reason of each and every step forward in my life, *my children*, to whom I promised a better tomorrow, *my father* who taught me everything in my whole life, and last but not least *my mother* who supported me through the whole work and get worried till it came out to light finally.

	Page
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	4
I. Cantilever Fixed Partial Denture	4
II. Zircona based ceramics	16
A. Cervical marginal accuracy	19
B. Fracture resistance	26
Aim of the study	43
Materials and Methods	44
Results	88
Discussion	102
Summary and Conclusions	113
References	116
Arabic Summary	1

		Page
Table (1)	Materials used in this study	44
Table (2)	Samples Grouping	48
Table (3)	Recommended Wash bake firing for VITAVMK Master	57
Table (4)	Recommended OPAQUE firing for VITAVMK Master	57
Table (5)	Recommended 1 st DENTINE firing for VITAVMK Master	58
Table (6)	Recommended 2 nd DENTINE firing for VITAVMK Master	58
Table (7)	Recommended VITA AKZENT firing for VITAVMK Master	59
Table (8)	Recommended VITAVM®9 EFFECT BONDER firing	79
Table (9)	Recommended 1 st DENTINE firing for VITAVM9	79
Table (10)	Recommended 2 nd DENTINE firing for VITAVM9	80
Table (11)	Recommended VITA AKZENT firing for VITAVM9	80
Table (12)	The mean, standard deviation (SD) values and results of Student's t-test for the comparison between cervical marginal discrepancies values (μ m) in the two groups.	89

		Page
Figure (1)	Conical dies of the master model	46
Figure (2)	Master model where the dies were fixed on a Teflon base	46
Figure (3)	Specially designed copper perforated impression tray	46
Figure (4)	Cantilever FPD design	47
Figure (5)	Silicon duplicate of the master metal model	50
Figure (6)	Stone model	50
Figure (7)	Die spacer applied 1 mm short from the preparation margin	50
Figure (8)	wax pattern of the bridge framework	51
Figure (9)	Checking connector dimensions	51
Figure (10)	Sprueing the wax pattern	52
Figure (11)	(a): Sprue attachment to the crucible former	52
	(b): Assembled casting plastic ring	
Figure (12)	The investment ring removed from the furnace	54
Figure (13)	Investment around the cast substructures	54
Figure (14)	Investment removed from around the cast substructures	54

Figure (15)	Cutting of the sprue using a Carborundum disk	56
Figure (16)	Finished cast substructure	56
Figure (17)	Connector width (3mm) checked using a caliper	56
Figure (18)	Checking of the cast substructures on their corresponding metal and stone models	56
Figure (19)	Dimensions of the veneering material being checked	60
Figure (20)	Glazed bridge	60
Figure (21)	Checking of the bridge on its corresponding model	60
Figure (22)	The start up menu of the program	62
Figure (23)	Select patient for new restoration	62
Figure (24)	Entering the required data to create new patient	63
Figure (25)	New restoration type selection	63
Figure (26)	Select material	64
Figure (27)	Impression screen	64
Figure (28)	Model sprayed with cerec propellant powder	65
Figure (29)	inEos scanner	65
Figure (30)	Model secured on the specific tray of the inEos scanner using specific clay	65

Figure (31)	Digital impression of the model	67
Figure (32)	Animated photo of the model	67
Figure (33)	Selection of restoration material	68
Figure (34)	Tracing of the preparation margins	68
Figure (35)	Defining the restoration insertion axis	69
Figure (36)	Animated Bridge	69
Figure (37)	Adjustment of restoration design	70
	(a) Adjustment of connector height	
	(b) Adjustment of connector width	
Figure (38)	Milling preview (a) External view (b) Internal view	71
Figure (39)	Selection of block used	72
Figure (40)	Waiting for block insertion	72
Figure (41)	Sirona inCoris ZI block size 40/19	74
Figure (42)	Sirona inCoris ZI block placed in the milling machine	
Figure (43)	Closure of the milling machine door	74
Figure (44)	Sirona inCoris ZI block milling	75

Figure (45)	Sirona inCoris ZI block after milling	75
Figure (46)	SIRONA inFire HTC furnace	75
Figure (47)	SIRONA inFire HTC crucible holder	76
Figure (48)	SIRONA inFire HTC crucible holder containing sintered bridges	76
Figure (49)	Sintered bridge	76
	(a) Internal view	
	(b) Side view	
	(c) Top view	
Figure (50)	Bridge, with shrunken dimensions than before sintering	76
Figure (51)	(a) Connector width (3mm) checked using a caliper	77
	(b) Connector height (4mm) of GP II checked using a caliper	77
	(c) Connector height (3.5mm) of GP III checked using a caliper.	78
	(d) Connector height (4.5mm) of GP IV checked using a caliper.	78
Figure (52)	Checking of the Zirconia frameworks on their corresponding metal models	78
Figure (53)	Dimensions of the veneering material being checked	81
Figure (54)		0.1
	Glazed bridge	81

Figure (56)	The base-metal model	83
Figure (57)	Bridge cemented on its corresponding base-metal model	83
Figure (58)	Specially designed and fabricated holding device	85
Figure (59)	Shot of the margin. (40X)	85
Figure (60)	Occlusal loading by means of a metallic sphere	87
Figure (61)	Histogram showing the mean cervical marginal discrepancy values (µm)	89
Figure (62)	Cervical marginal discrepancy of Metal-Ceramic group. (40X)	90
Figure (63)	Cervical marginal discrepancy of Zirconia. (40X)	90
Figure (64)	Histogram representing mean and standard deviation values of fracture resistance in the four groups	92
Figure (65)	Representative figure of the fracture pattern of Gp I	93
Figure (66)	Representative figure of the fracture pattern of Gp II	94
Figure (67)	Representative figure of the fracture pattern of Gp III	95
Figure (68)	Representative figure of the fracture pattern of Gp IV	96
Figure (69)	Scanning electron photomicrograph showing the fractured surface of Gp I (A: 115X, B: 250X, C: 1000X).	98

- **Figure (70)** Scanning electron photomicrograph showing the fractured surface of Gp II (A: 115X, B: 250X, C:1000X)
- **Figure (71)** Scanning electron photomicrograph showing the 100 fractured surface of Gp III (A: 115X, B: 250X, C: 1000X)
- **Figure (72)** Scanning electron photomicrograph showing the 101 fractured surface of Gp IV (A: 115X, B: 250X, C: 1000X)

Cantilever fixed partial dentures can be used to replace molars when there is no distal abutment present. When used judiciously, it is possible to avoid the insertion of a unilateral removable partial denture. Most commonly, this type of fixed partial denture is used to replace a first molar, although occasionally it is used to replace a second molar to prevent supereruption of opposing teeth.

When the pontic is loaded occlusally, the adjacent abutment tends to act as a fulcrum, with a lifting tendency on the farthest retainer. To minimize the leverage effect, the pontic should be kept as small as possible, more nearly representing a premolar than a molar. There should be light occlusal contact with absolutely no contact in any excursion. The pontic should possess maximum occluso-gingival height to ensure a rigid prosthesis.

A posterior cantilever pontic places maximum demands on the retentive capacity of the retainer. Its use, therefore, should be reserved for those situations in which there is adequate clinical crown length on the abutment teeth to permit preparations of maximum length and retention.

The use of all-ceramic materials for fixed restorations in dentistry has become more and more important for patients and clinicians in the last decades.

Since the first feldspathic crown was inserted in 1886 ¹, recent progress in material technology and manufacturing procedures has extended the indications for these materials.

In 1990 the IPS Empress system (Ivoclar Vivadent) was introduced to the dental community and became a popular all-ceramic system for pressed glass-ceramic inlay, onlay, and veneer restorations. To increase the