The Role of Apelin gene polymorphism in obesity

A thesis submitted for the partial fulfillment of Master Degree in Pharmaceutical Sciences (Biochemistry)

Presented by

Mostafa Ahmed Aboouf ALi

Demonstrator of Biochemistry, Faculty of Pharmacy, Ain Shams University B. Ph. Sci., Ain Shams University, 2009

Under Supervision of

Prof. Dr. Hala Osman EL-Mesallamy

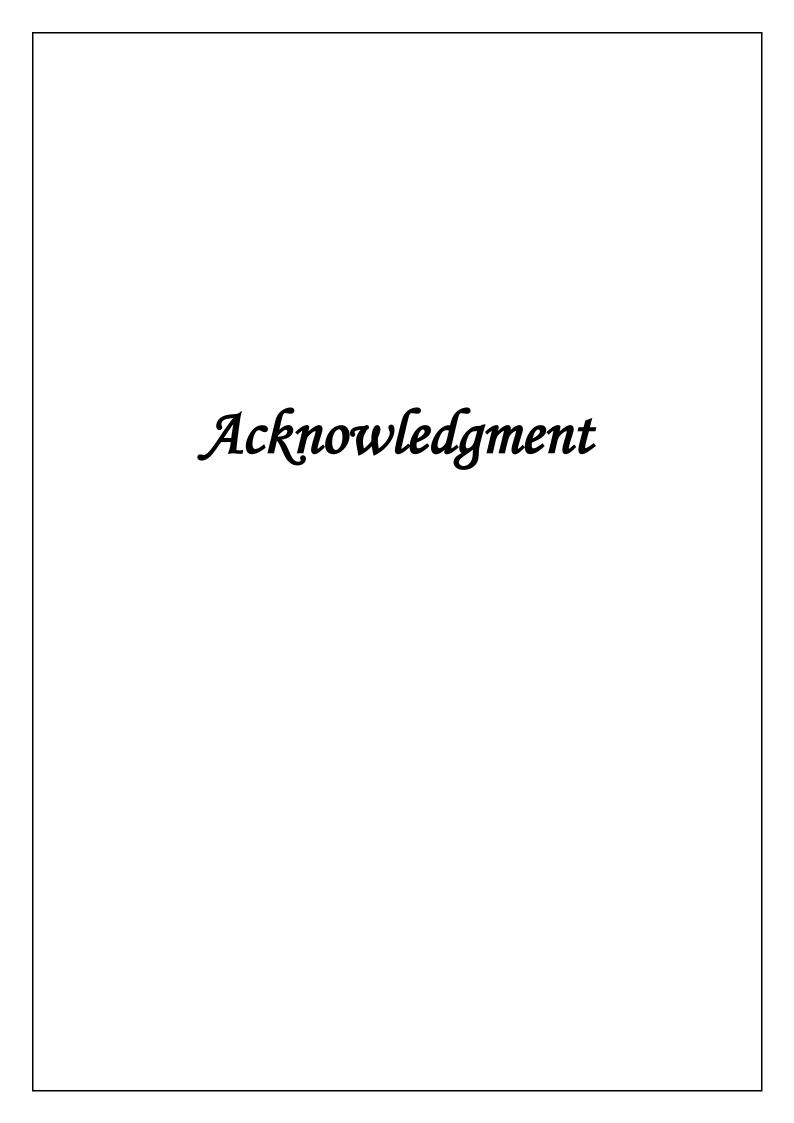
Prof. Dr. Ashraf Ismail
Amin

Professor of Biochemistry
Head of Biochemistry Department
Faculty of Pharmacy
Ain Shams University

Professor of Clinical Pathology
Head of the General Organization of the
Teaching Hospitals and Institutes
Cairo University

Dr. Nadia Hamdy El-Hefny

Associate Professor of Biochemistry Faculty of Pharmacy Ain Shams University


Biochemistry Department Faculty of Pharmacy Ain Shams University 2015

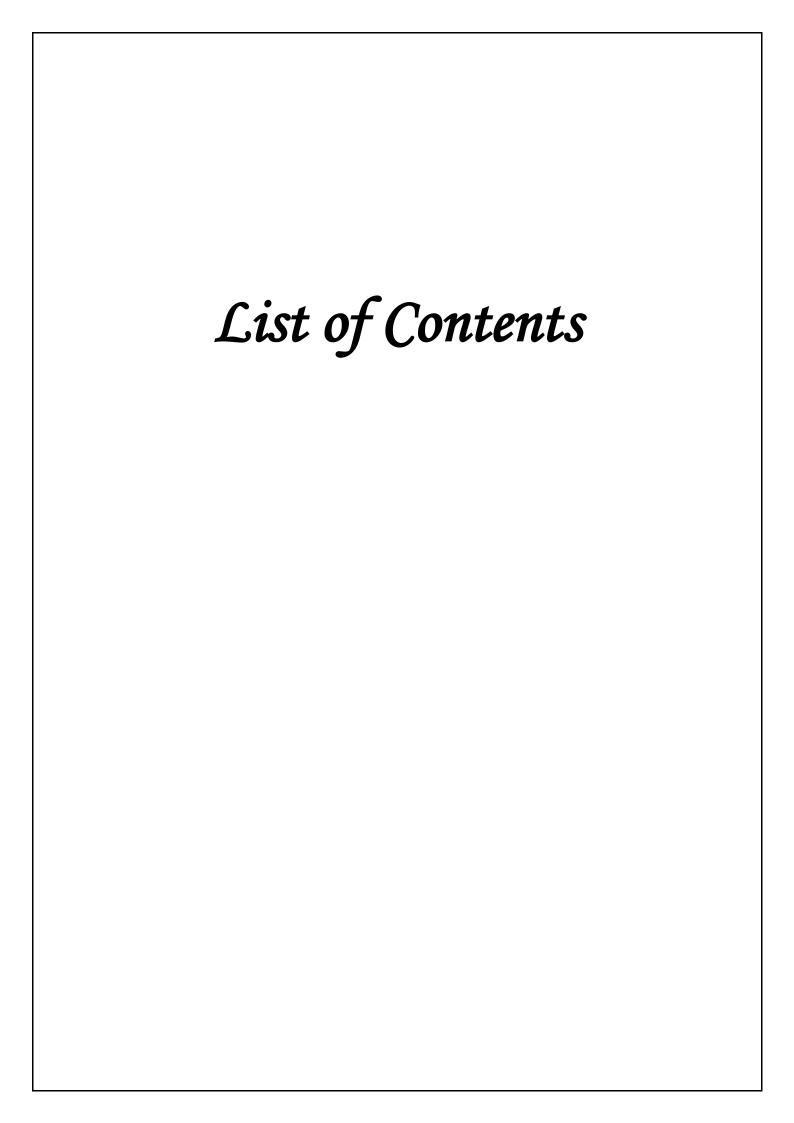
بسم الله الرحمن الرحيم

ا وَعَلَّمَ آدَمَ الأَسْمَاء كُلَّهَا ثُمَّ عَرَضَهُمْ عَلَى الْمَلائِكَةِ فَقَالَ أَنبِئُونِي بِأَسْمَاء هَوُلاء إِن كُنتُمْ صَادِقِينَ قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ * قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ * الْحَكِيمُ الْحَلَيْمُ الْحَكِيمُ الْحَكِيمُ الْحَكَيْمُ الْعَلَيْمُ الْحَكَيْمُ الْحَكَيْمُ الْعَلَيْمُ الْحَكِيمُ الْحَكِيمُ الْحَلِيمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلِيمُ الْحَلَيْمُ الْحَلَيْمُ الْحَلِيمُ الْحَلَيْمُ الْحَلِيمُ الْحَلَيْمُ الْمَلْكُونُ الْحَلَيْمُ الْحَلْمُ الْحَلَيْمُ الْحَلْمُ الْحِلْمِ الْحَلْمُ الْحَلْم

حدق الله العظيم

سورة البغرة (31و32)

Acknowledgement


First of all, I do thank **Allah** for leading me all the way to accomplish this work. His guidance and enlightening my way were the ignition behind my persistence. May it be a step towards gaining **Allah**'s mercy and blessings and may **Allah** accept from us the good deeds, and forgive us in shortcomings.

I would like to express my deepest thanks and sincere gratitude to **Dr. Hala Osman El-Mesallamy, Professor of Biochemistry and Vice Dean for Graduate Studies and Research, Faculty of Pharmacy, Ain Shams University.** Her useful comments and remarks have enriched this work greatly till it is presented in the current form. Moreover, her leadership, support and attention to details have set an example I hope to match someday.

I would like to thank **Dr. Ashraf Ismail Amin, Professor of Clinical Pathology and Head of the General Organization of Teaching Hospitals and Institutes, Cairo University,** for his great help, support and allowing the access to National Institute for Diabetes and Endocrinology from where samples were withdrawn.

I would also like to express my gratefulness and appreciation for **Dr. Nadia Hamdy El-Hefny, Associate Professor of Biochemistry and acting as head of Biochemistry Department, Faculty of Pharmacy, Ain Shams University,** for her commitment during the work time, engagement through the learning process of this master thesis.

Last but not least, I extend my most sincere and heartfelt thanks to my whole family. I would like to thank namely my mother, father, brother, sister and my mirror image for their endless love, continuous support, care and patience throughout the work period and my whole life. Thank you dear Lord for having them; without them I am really nothing.

Subjects	Page
LIST OF ABBREVIATIONS	I
LIST OF TABLES	Iii
LIST OF FIGURES	Vi
1. INTRODUCTION AND AIM OF THE WORK	1
2. LITERATURE REVIEW	4
2.1. Obesity prevalence	4
2.2. Health risks of obesity	6
2.3. Definition and measurement of obesity	8
2.4. Etiology of obesity	11
2.5. Obesity and genetics	12
2.6. Adipose tissue	14
2.7. Adipogenesis and angiogenesis	20
2.8. Obesity and Insulin resistance	22
2.9. Metabolic syndrome	26
2.10. Apelin	28
2.10.1. Apelin and angiogenesis	31
2.10.2. Apelin gene regulation	32
2.10.3. Apelin action on insulin responsive tissues	33
2.10.4. Effect of apelin on pancreas	35
2.10.5. Central effect of apelin on energy metabolism	37
3. SUBJECTS AND METHODS	38
3.1. Subjects	38
3.2. Methods	44
3.3. Statistical analysis	68
4. RESULTS	69
5. DISCUSSION	101
6. SUMMARY AND CONCLUSIONS	114
7. RECOMMENDATIONS	117

List of Contents

8. REFERENCES	118
ARABIC SUMMARY	3-1

List of Abbreviations	

<u>Abbreviation</u> <u>Definition</u>

ACE2 Angiotensin converting enzyme 2

Akt Protein kinase B

ALT Alanine aminotransferase

AMPK Adenosine Mono Phosphate activated protein

kinase

APLN Apelin gene

AST Aspartate aminotransferase

BAT Brown adipose tissue

BMI Body mass index

CAD Coronary artery diseases

CNS Central nervous system

CV Cardiovascular

CVD Cardiovascular diseases

DM Diabetes mellitusECs Endothelial cells

ELISA Enzyme linked immunosorbent assay

eNOS Endothelial nitric oxide synthase

FAO Fatty acid oxidation

FPG Fasting plasma glucose

FSI Fasting serum insulin

GWAS Genome wide association studies

HDL-C High density lipoprotein cholesterol

HOMA-IR Homeostasis model assessment for insulin

resistance

HSL Hormone sensitive lipase

HWE Hardy-Weinberg equilibrium

IR Insulin resistance

Interleukin-6 IL-6

List of Abbreviations

LDL-C Low density lipoprotein cholesterol

LFT Liver function tests

MAPK mitogen-activated and ERK kinase

MCP-1 Monocyte chemoattractant protein 1

MetS Metabolic syndrome

NIDE National Institute of Diabetes and Endocrinology

PAI-1 Plasminogen activator inhibitor 1

PCR Polymerase chain reaction

QUICKI Quantitative insulin sensitivity check index

SAT Subcutaneous adipose tissue

SNP Single nucleotide polymorphism

T2DM Type 2 diabetes mellitus

TAG Triacylglycerols

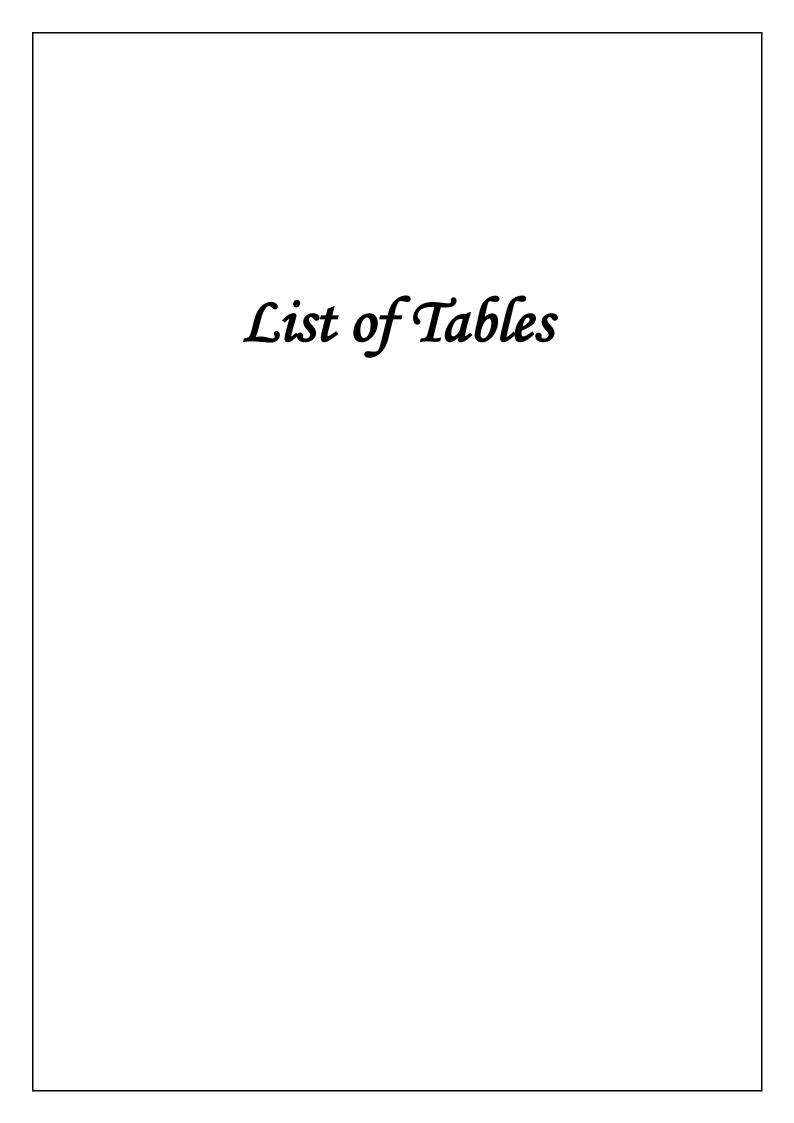
TC Total cholesterol

TNF-α Tumor necrosis factor alpha

UCP Uncoupling protein

VAT Visceral adipose tissue

VEGF Vascular endothelial growth factor


VLDL Very low density lipoprotein

WAT White adipose tissue

WC Waist circumference

WHO World health organization

WHR Waist to hip ratio


List of Tables

Table No.	Title	Page
1	Increased risk of certain diseases in people with a raised BMI	7
2	The practical methods used in clinical practice to assess obesity.	9
3	Contributing Factors to the obesity Epidemic	11
4	Latest criteria defined by the International Diabetes Federation (IDF) for clinical diagnosis of the metabolic syndrome	27
5	Clinical and anthropometric data of the studied groups	69
6	Fasting plasma glucose and IR parameters of the studied groups.	70
7	Lipids profile and liver function tests of the study groups	71
8	Allelic frequencies in the sample population	72
9	Allelic frequencies in the obese and non-obese groups	73
10	Allelic frequencies in the T2DM and non-diabetic groups	73
11	The genotype frequencies of <i>APLN</i> rs3115757 gene polymorphism in the obese and non-obese groups	74
12	The genotype frequencies of <i>APLN</i> rs3115757 gene polymorphism in non-obese, obese and morbidly obese groups	75
13	The genotype frequencies of <i>APLN</i> rs3115757 gene polymorphism in the T2DM and non-diabetic groups	76
14	The HWE test for the population sample	78
15	The HWE test for obese women	79

Table No.	Title	Page
16	The HWE test for non-obese women	79
17	The HWE test for T2DM women.	80
18	The HWE test for non-diabetic women	80
19	The differences among genotypes of <i>APLN</i> rs3115757 regarding anthropometric measures across the whole studied population	82
20	The differences between <i>GG</i> and <i>CC+CG</i> genotypes of <i>APLN</i> rs3115757 regarding anthropometric measures among the whole population	85
21	The differences among genotypes of <i>APLN</i> rs3115757 regarding IR parameters across the whole studied population	87
22	The differences between <i>CC</i> and <i>CG</i> + <i>GG</i> genotypes of <i>APLN</i> rs3115757 regarding IR parameters across the whole studied population.	89
23	The differences among genotypes of <i>APLN</i> rs3115757 regarding lipids profile, ALT and AST across the whole studied population.	91
24	Association of <i>APLN</i> rs3115757 gene polymorphism and study groups	92
25	Association of <i>APLN</i> rs3115757 gene polymorphism and obesity defined as BMI into obese and non-obese groups	93
26	Association of <i>APLN</i> rs3115757 gene polymorphism and obesity defined as BMI into non-obese, obese and morbidly obese groups.	93
27	Association of <i>APLN</i> rs3115757 genotypes <i>GG</i> vs <i>CC+CG</i> and obesity defined as BMI into non-obese, obese and morbidly obese groups	94
28	Odds Ratio of <i>GG</i> vs <i>CC</i> + <i>CG</i> genotypes of <i>APLN</i> rs3115757 regarding morbid obesity	95
29	Odds Ratio of <i>GG</i> vs <i>CC+CG</i> genotypes of <i>APLN</i> rs3115757 regarding morbid obesity after adjustment for age and FSI	95

List of Tables

Table No.	Title	Page
30	Association of <i>APLN</i> rs3115757 gene polymorphism and T2DM	96
31	Odds Ratio of <i>GG</i> vs <i>CC+CG</i> genotypes of <i>APLN</i> rs3115757 regarding FSI.	97
32	Association of <i>APLN</i> rs3115757 gene polymorphism and hypertension.	97
33	Cochran-Armitage trend test for case-control samples of the <i>APLN</i> rs311575 under the recessive model	98
34	Association of <i>APLN</i> rs3115757 gene polymorphism G/C alleles and obesity defined by BMI, into non-obese and obese groups	99
35	Association of <i>APLN</i> rs3115757 gene polymorphism G/C alleles and obesity defined by BMI, into non-obese, obese and morbidly obese groups.	99
36	Odds Ratio of G vs C alleles of APLN rs3115757 regarding morbid obesity.	100
37	Individual data of control non-obese group	142
38	Individual data of obese diabetic group	144
39	Individual data of obese non diabetic group	149

